Provable Representation Learning

Jason D. Lee Princeton University

Joint work with

Qi Lei, Simon Du, Wei Hu, Sham Kakade, Nikunj Saunshi, and Jiacheng Zhuo.

https://arxiv.org/abs/2002.09434 https://arxiv.org/abs/2008.01064

Representation Learning

Deep Learning's success is due to learning useful representations.

- Deep networks learns the feature representation.
- Feature representations transfer to other tasks.
- Representations can be learned on unlabeled data.
- Competing methods lack transferrability.

Competing methods are unable to do this (random forests, kernel machines, gradient boosting)

Simplest algorithm:

- Train a deep network on some task (can be on Imagenet or self-supervised task).
- Weep only the body, and discard the head.
- Retrain (or finetune) the head using labeled data from target domain.

Imagenet (Supervised) Pretraining

Figure: Dates back to at least Caruana 1997.

Representation Learning: Target Task

Train new head using labeled data from target task.

Applications of Representation Learning

Many of the DL success stories:

- Any domain without enough data.
- Even applications with a lot of labeled data (Imagenet) can benefit from self-supervised pretraining.
- Language models.
- Transfer learning.
- Meta-learning
- Reinforcement Learning
- :

Framework.

 $f(x) = g \circ \phi(x)$ with $g \in \mathcal{G}, \phi \in \Phi$.

- T tasks, n_S samples per source task, and n_T samples on the target task. $C(\mathcal{F})$ is complexity.
- Maurer and Baxter proves results of the type:

$$\mathsf{Risk} \lesssim rac{\mathcal{C}(\Phi)}{\sqrt{T}} + rac{\mathcal{C}(\mathcal{G})}{\sqrt{n_T}}.$$

• Cannot use the n_S samples across tasks to learn the representation.

Goal

Under natural assumptions,

$$\mathsf{Risk} \lesssim \frac{\mathcal{C}(\Phi)}{n_S T} + \frac{\mathcal{C}(\mathcal{G})}{n_T}.$$

Without these assumptions, such a rate is not attainable.

Comparison

$$\frac{\mathcal{C}(\Phi)}{\sqrt{T}} + \frac{\mathcal{C}(\mathcal{G})}{\sqrt{n_T}} \text{ vs } \frac{\mathcal{C}(\Phi)}{n_S T} + \frac{\mathcal{C}(\mathcal{G})}{n_T}$$

- Biggest gain: pool all $n_S \times T$ samples to learn the complex representation $\phi \in \Phi$.
- Minor gain: slow rate improved to fast rate.
- Old bound does not depend on n_S . The same rate for $n_S = 1$ and $n_S = 10^8$.

Assumptions:

- Shared good representation across tasks: $y_t = w_t^{\top} \phi^*(x)$.
- 2 Diversity of the $\{w_t\}$.

Why?

- **()** Shared representation encodes what transfers across the tasks.
- 2 Diversity of the $\{w_t\}$ (at least needs to "cover" w_{T+1} .)

Failure Cases

- **1** If ϕ^* is not shared across task, cannot obtain $\frac{\mathcal{C}(\Phi)}{n_s T}$.
- **2** If w_{T+1} is in a direction not spanned by w_t , then you have not learned ϕ^* in that direction.

For Source Tasks:

$$\hat{\phi} \leftarrow \min_{\phi \in \Phi, \boldsymbol{w}_1, \dots, \boldsymbol{w}_T \in \mathbb{R}^k} \frac{1}{2n_1 T} \sum_{t=1}^T \| \boldsymbol{y}_t - \phi(X_t) \boldsymbol{w}_t \|^2.$$

For Target Task: train a linear predictor on top of $\hat{\phi}$:

$$\hat{\boldsymbol{w}}_{T+1} \leftarrow \min_{\boldsymbol{w}_{T+1} \in \mathbb{R}^k} \frac{1}{2n_2} \left\| \boldsymbol{y}_{T+1} - \hat{\phi}(X_{T+1}) \boldsymbol{w}_{T+1} \right\|^2$$

•

Notation:

- $\phi(x) = Bx$ for $B = k \times d$ encodes k-dimensional subspace.
- $y_t = \theta_t^\top x = w_t^\top B x$, so all θ_t live in the same k-dimensional subspace.

Assumptions:

- Shared representation: Same B for every task.
- Diversity: Stack $\{w_t\}$ into a matrix W and the matrix has condition number O(1).

Theorem

Under these assumptions,

$$\operatorname{Risk} \lesssim rac{kd}{n_ST} + rac{k}{n_T}.$$

- No dependence on condition numbers: operating in a regime where span(B) is not estimable.
- Extends to the case of covariate shift. Does not need $p_t(x)$ shared.
- Concurrent work by Tripuraneni et al. for isotropic Gaussian x (no covariate shift and span(B) is estimable).
- Algorithmic implementable via Nuclear Norm relaxation, but costs condition numbers in the risk.

Theorem

Under the same assumptions,

$$\mathsf{Risk} \lesssim rac{\mathcal{C}(\Phi)}{n_S T} + rac{k}{n_T}.$$

- We do not know how to implement in polynomial time.
- Covariate shift is allowed.

Two-layer Neural Network Representations

• Source Tasks with Weight decay:

$$\hat{B}, \hat{W} = \underset{\substack{B \in \mathbb{R}^{d_0 \times d}, \\ W = [\boldsymbol{w}_1, \cdots, \boldsymbol{w}_T] \in \mathbb{R}^{d \times T}}}{\arg\min} \frac{1}{2n_1 T} \sum_{t=1}^T \|\boldsymbol{y}_t - (X_t B)_+ \boldsymbol{w}_t\|^2 + \frac{\lambda}{2} \|B\|_F^2 + \frac{\lambda}{2} \|W\|_F^2.$$

• Training on target task:

$$\hat{\boldsymbol{w}}_{T+1} \leftarrow \operatorname*{arg\,min}_{\|\boldsymbol{w}\| \leq r} \frac{1}{2n_2} \|\boldsymbol{y}_{T+1} - (X_{T+1}\hat{B})_+ \boldsymbol{w}\|^2.$$

Theorem

$$\textit{Risk} \leq \frac{\textit{Rademacher}}{\sqrt{n_1 T}} + \frac{\|w^*\|}{\sqrt{n_T}}$$

Create your own labels

Supervised pretraining needs labels from related tasks. What if this isn't available?

Create labels from the input data.

Self-Supervised Learning.

Predict functions of the input from other parts.

- Denoising autoencoder.
- Context Encoder (Image inpainting)
- Next word prediction and missing word prediction.
- Image colorization.
 - :

Learning Pikachu

Figure: Self-supervised Learning: Predicting what you already know.

Self-supervised Learning: Does it work?

Figure: Linear classifier + pretraining on pretext task outperforms supervised learning. Credit: Google AI blog.

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Figure: Pretrained on ImageNet via self-supervised learning. (Credit: SimCLR)

Why?

Why does predicting parts of the input help?

- No extra information, we already observed the entire input.
- Hope: ψ keeps the relevant parts of y|x such that a simple classifier (e.g. linear or fine-tuned)

- Contrastive Learning when have access to $x^+, x \sim C^+$ and $x^- \sim C^-$ (Arora et al.) learns a mean classifier.
- Contrastive Learning in topics models (Tosh et al., Daniel's talk) learns posterior distribution and multview model.
- Multiview learning/Redundancy (Foster and Kakade) when both x₁, x₂ get low error. Algorithm uses CCA to reduce dimension.
- Information bottleneck "explanations".

This talk.

Figure: Context Encoder (Pathak et al.)

Jason D. Lee Provable Representation Learning

Algorithm

- Take input and partition into (x_1, x_2) (e.g. x_2 is small patch and x_1 is remainder of the image).
- Setup pretext task as $\min_{\psi} \mathbb{E} ||X_2 \Psi(X_1)||^2$. Typically $\psi(x_1) = D_{\phi} \circ E_{\theta}(x_1)$ for a deep network D_{ϕ}, E_{θ} .
- **③** Use n_L labeled samples to learn

$$\min_{W} \|Y - \psi(X_2)W\|^2.$$

Variants:

- Choose ψ as only encoder E_{θ} .
- Solve many different pretext tasks.

- Label $Y \in \mathbb{R}^k$.
- 2 $X_1 \in \mathbb{R}^{d_1}$ and $X_2 \in \mathbb{R}^{d_2}$.
- **3** Latent variables $Z \in \mathbb{R}^m$.

•
$$\psi(x_1) := Bx_1$$
, where $B = \arg \min \mathbb{E} ||X_2 - BX_1||^2 \in \mathbb{R}^{d_1 \times d_2}$.
• Learn $w = \arg \min \mathbb{E} ||Y - w^\top BX_1||^2$.

Compare this to $\theta = \arg \min \mathbb{E} ||Y - \theta^{\top} X_1||^2$. In the linear case, there is closed-form:

$$\theta = Bw^* + \Sigma_{X_1, X_2|Y}\delta.$$

• If $X_1 \perp X_2 | Y$ (partial correlation is 0), then $\theta = Bw^*$.

2 Only need k (dimension of Y) samples instead of d_1 .

What if $\Sigma_{X_1,X_2|Y}$ is big?

• Consider some latent variables Z such that $X_1, X_2 \mid Y, Z$ (or almost partially uncorrelated)

$$\mathsf{Risk} \leq \mathcal{O}\left(\frac{k+m}{n_L} + \frac{1}{\beta} \|\Sigma_{X_1, X_2 | Y, Z} \| + \epsilon_{\mathsf{pre}}\right),$$

- ϵ_{pre} is accuracy of learning pretext task.
- Sample complexity reduced from $n \asymp d$ to $n \asymp k + m$.
- $\beta = \sigma_{k+m}(\Sigma_{\bar{Y}\bar{Y}}^{-1}\Sigma_{\bar{Y}X_2})$, X_2 and \bar{Y} cannot be uncorrelated.

Characterizing Conditional Independence

Define $\epsilon_{CI} = \mathbb{E}_{X_1} \|\mathbb{E}[X_2|X_1] - \mathbb{E}_{Y,Z}[\mathbb{E}[X_2|Y,Z]|X_1]\|^2$. This is 0 if $X_1, X_2 \mid Y, Z$.

• Hilbert-Schmidt norm of a certain conditional cross-covariance operator.

Excess Risk
$$\leq \mathcal{O}\left(rac{k+m}{n_L} + \epsilon_{\mathsf{CI}} + \epsilon_{\mathsf{pre}}
ight)$$
.

- ERM would need $n \asymp \text{Complexity of Function Class.}$
- X_2 does not linearly predict Y, but $\psi(X_2)$ does.
- Excess risk is relative to the best predictor $f^*(X_1)$ over all functions f.

- Provable **algorithms** for representation learning (preferably SGD).
- Approximate conditional independence is not generally applicable. What other conditions allows self-supervised learning to work? Design pretext tasks motivated by theory.
- Contrastive loss vs reconstruction loss?
- Finetuning, refine the representation when n_L is larger.

Thank you!