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Representation Learning

Representation Learning

Deep Learning’s success is due to learning useful representations.

Deep networks learns the feature representation.

Feature representations transfer to other tasks.

Representations can be learned on unlabeled data.

Competing methods lack transferrability.

Competing methods are unable to do this (random forests,
kernel machines, gradient boosting)
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How is deep representation learning done?

Simplest algorithm:

1 Train a deep network on some task (can be on Imagenet or
self-supervised task).

2 Keep only the body, and discard the head.

3 Retrain (or finetune) the head using labeled data from target
domain.
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Imagenet (Supervised) Pretraining

Figure: Dates back to at least Caruana 1997.
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Representation Learning: Target Task

Train new head using labeled data from target task.
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Applications of Representation Learning

Many of the DL success stories:

Any domain without enough data.

Even applications with a lot of labeled data (Imagenet) can
benefit from self-supervised pretraining.

Language models.

Transfer learning.

Meta-learning

Reinforcement Learning
...
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In Theory?

Framework.

f(x) = g ◦ φ(x) with g ∈ G, φ ∈ Φ.

T tasks, nS samples per source task, and nT samples on the
target task. C(F) is complexity.

Maurer and Baxter proves results of the type:

Risk .
C(Φ)√
T

+
C(G)
√
nT

.

Cannot use the nS samples across tasks to learn the
representation.
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Ideal Representation Learning

Goal

Under natural assumptions,

Risk .
C(Φ)

nST
+
C(G)

nT
.

Without these assumptions, such a rate is not attainable.
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Ideal Representation Learning

Comparison

C(Φ)√
T

+
C(G)
√
nT

vs
C(Φ)

nST
+
C(G)

nT

Biggest gain: pool all nS × T samples to learn the complex
representation φ ∈ Φ.

Minor gain: slow rate improved to fast rate.

Old bound does not depend on nS . The same rate for nS = 1
and nS = 108.
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How do attain ideal rate

Assumptions:

1 Shared good representation across tasks: yt = w>t φ
∗(x).

2 Diversity of the {wt} .

Why?

1 Shared representation encodes what transfers across the tasks.

2 Diversity of the {wt} (at least needs to “cover” wT+1.)
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Necessity of the Assumptions

Failure Cases

1 If φ∗ is not shared across task, cannot obtain C(Φ)
nST

.

2 If wT+1 is in a direction not spanned by wt, then you have not
learned φ∗ in that direction.
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Algorithm

For Source Tasks:

φ̂← minimize
φ∈Φ,w1,...,wT∈Rk

1

2n1T

T∑
t=1

‖yt − φ(Xt)wt‖2 .

For Target Task: train a linear predictor on top of φ̂:

ŵT+1 ← minimize
wT+1∈Rk

1

2n2

∥∥∥yT+1 − φ̂(XT+1)wT+1

∥∥∥2
.
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Warmup: Linear Representation Learning

Notation:

φ(x) = Bx for B = k × d encodes k-dimensional subspace.

yt = θ>t x = w>t Bx , so all θt live in the same k-dimensional
subspace.

Assumptions:

Shared representation: Same B for every task.

Diversity: Stack {wt} into a matrix W and the matrix has
condition number O(1).
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Linear Representation Learning

Theorem

Under these assumptions,

Risk .
kd

nST
+

k

nT
.

No dependence on condition numbers: operating in a regime
where span(B) is not estimable.

Extends to the case of covariate shift. Does not need pt(x)
shared.

Concurrent work by Tripuraneni et al. for isotropic Gaussian x
(no covariate shift and span(B) is estimable).

Algorithmic implementable via Nuclear Norm relaxation, but
costs condition numbers in the risk.
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General Representation Learning

Theorem

Under the same assumptions,

Risk .
C(Φ)

nST
+

k

nT
.

We do not know how to implement in polynomial time.

Covariate shift is allowed.
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Two-layer Neural Network Representations

Source Tasks with Weight decay:

B̂, Ŵ = arg min
B∈Rd0×d,

W=[w1,··· ,wT ]∈Rd×T

1

2n1T

T∑
t=1

‖yt − (XtB)+wt‖2 +
λ

2
‖B‖2F +

λ

2
‖W‖2F .

Training on target task:

ŵT+1 ← arg min
‖w‖≤r

1

2n2
‖yT+1 − (XT+1B̂)+w‖2.
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Neural Network Excess Risk

Theorem

Risk ≤ Rademacher√
n1T

+
‖w∗‖
√
nT
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No labeled data?

Create your own labels

Supervised pretraining needs labels from related tasks. What if this
isn’t available?

Create labels from the input data.
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1 Supervised Representation Learning

2 Self-Supervised Learning
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Self-Supervised Representation Learning

Self-Supervised Learning.

Predict functions of the input from other parts.

Denoising autoencoder.

Context Encoder (Image inpainting)

Next word prediction and missing word prediction.

Image colorization.
...
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Learning Pikachu

Figure: Self-supervised Learning: Predicting what you already know.
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Self-supervised Learning: Does it work?

Figure: Linear classifier + pretraining on pretext task outperforms
supervised learning. Credit: Google AI blog.
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Self-Supervised for Transfer

Figure: Pretrained on ImageNet via self-supervised learning. (Credit:
SimCLR)
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Why?

Why?

Why does predicting parts of the input help?

No extra information, we already observed the entire input.

Hope: ψ keeps the relevant parts of y|x such that a simple
classifier (e.g. linear or fine-tuned)
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Prior Related Work.

1 Contrastive Learning when have access to x+, x ∼ C+ and
x− ∼ C− (Arora et al.) learns a mean classifier.

2 Contrastive Learning in topics models (Tosh et al., Daniel’s
talk) learns posterior distribution and multview model.

3 Multiview learning/Redundancy (Foster and Kakade) when
both x1, x2 get low error. Algorithm uses CCA to reduce
dimension.

4 Information bottleneck “explanations”.
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This talk.

Figure: Context Encoder (Pathak et al.)
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Algorithm

1 Take input and partition into (x1, x2) (e.g. x2 is small patch
and x1 is remainder of the image).

2 Setup pretext task as minψ E‖X2 −Ψ(X1)‖2. Typically
ψ(x1) = Dφ ◦ Eθ(x1) for a deep network Dφ, Eθ.

3 Use nL labeled samples to learn

min
W
‖Y − ψ(X2)W‖2.

Variants:

Choose ψ as only encoder Eθ.

Solve many different pretext tasks.
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Notation

1 Label Y ∈ Rk.

2 X1 ∈ Rd1 and X2 ∈ Rd2 .

3 Latent variables Z ∈ Rm.
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Warm-up: Linear case.

1 ψ(x1) := Bx1, where B = arg minE‖X2 −BX1‖2 ∈ Rd1×d2 .

2 Learn w = arg minE‖Y − w>BX1‖2.

Compare this to θ = arg minE‖Y − θ>X1‖2. In the linear case,
there is closed-form:

θ = Bw∗ + ΣX1,X2|Y δ.

1 If X1 ⊥ X2|Y (partial correlation is 0), then θ = Bw∗.

2 Only need k (dimension of Y ) samples instead of d1.
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Warm-up: Linear Case

What if ΣX1,X2|Y is big?

Consider some latent variables Z such that X1, X2 | Y,Z (or
almost partially uncorrelated)

Risk ≤ O
(
k +m

nL
+

1

β
‖ΣX1,X2|Y,Z‖+ εpre

)
,

εpre is accuracy of learning pretext task.

Sample complexity reduced from n � d to n � k +m.

β = σk+m(Σ−1
Ȳ Ȳ

ΣȲ X2
) , X2 and Ȳ cannot be uncorrelated.
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General Functions

Characterizing Conditional Independence

Define εCI = EX1 ‖E[X2|X1]− EY,Z [E[X2|Y, Z]|X1]‖2. This is 0 if
X1, X2 | Y,Z.

Hilbert-Schmidt norm of a certain conditional cross-covariance
operator.

Excess Risk ≤ O
(
k +m

nL
+ εCI + εpre

)
.

ERM would need n � Complexity of Function Class.

X2 does not linearly predict Y , but ψ(X2) does.

Excess risk is relative to the best predictor f∗(X1) over all
functions f .
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Future Directions.

Provable algorithms for representation learning (preferably
SGD).

Approximate conditional independence is not generally
applicable. What other conditions allows self-supervised
learning to work? Design pretext tasks motivated by theory.

Contrastive loss vs reconstruction loss?

Finetuning, refine the representation when nL is larger.
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Thank you!
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