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Selective Inference

Selective Inference is about testing hypotheses suggested by
the data.

Selective Inference is common. In many applications there is no
hypothesis specified before data collection and exploratory analysis.

Inference after variable selection. Confidence intervals and
p-values are only reported for the selected variables.

Exploratory Data Analysis by Tukey emphasized using data to
suggest hypotheses, and post-hoc analysis to test these.

Screening in Genomics, only select genes with large t-statistic
or correlation.

Peak/bump hunting in neuroscience, only study process when
Xt > τ or critical points of the process.
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Selective Inference

Conventional Wisdom (Data Dredging, Wikipedia)

A key point in proper statistical analysis is to test a
hypothesis with data that was not used in constructing
the hypothesis. (Data splitting)

This talk

The Condition on Selection framework allows you to specify
and test hypotheses using the same dataset.
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Overview of my Research

Machine Learning. Large-scale matrix completion,
non-negative matrix factorization, clustering, and
communication-efficient sparse learning.

Statistical Methodology. Selective inference, theory of
regularized M-estimators, and high-dimensional statistical
inference.

Large-scale Optimization. Composite optimization,
distributed optimization, and stochastic gradient intervals.

Fusing the three areas

Selective Inference for Lasso = Convex Analysis/Opt + Statistics.
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Scalable and Distributed Algorithms I
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1 Matrix Factorization. fast-ALS reduces the computational
cost and communication of ALS by O(r), but with the same
convergence rate. Apache Spark implementation takes 6
seconds per iteration for a 106 × 106 matrix with 109

non-zeroes, and 2 minutes per iteration for a 107 × 107 matrix
with 109 non-zeroes.

2 One-Pass Non-negative Matrix Factorization on Hadoop
Factorizes a 2TB heat transfer dataset in 50 min and
factorizes a 345GB flow cytometry dataset in 20 min.
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Scalable and Distributed Algorithms II
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1 Proximal Newton Method. Designed and analyzed a second
order algorithm for regularized estimators, which includes
state-of-art methods such as glmnet,liblinear, and quic.

2 Communication-efficient distributed sparse regression.
Proposed an algorithm for solving distributed sparse
regression, which has the lowest communication cost among

algorithms that achieve estimation rate
∥∥∥β̂ − β0∥∥∥

2
≤
√

slogp
nk .
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High-dimensional model selection and estimation

Unified theory of model selection consistency in
regularized estimators of the form `(θ) + ρ(θ). Provides
structure learning consistency in graphical models, variable
selection consistency in lasso, and rank consistency for nuclear
norm (matrix completion).

Confidence intervals via stochastic gradient sampling.
SGD is one of the most common learning algorithms. We use
iterates of SGD to build confidence intervals by using markov
chain CLT.
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Motivation: Linear regression in high dimensions

1 Select relevant variables M̂ via a variable selection procedure
(k most correlated, lasso, forward stepwise ...).

2 Fit linear model using only variables in M̂ , β̂M̂ = X†
M̂
y.

3 Construct 90% z-intervals (β̂j − 1.65σj , β̂j + 1.65σj) for
selected variables j ∈ M̂ .

Are these confidence intervals correct?
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Check by Simulation

Generate design matrix X ∈ Rn×p from a standard normal
with n = 20 and p = 200.

Let y = N (Xβ0, 1).

β0 is 2 sparse with β01 , β
0
2 = SNR.

Use marginal screening to select k = 2 variables, and then fit
linear regression over the selected variables.

Construct 90% confidence intervals for selected regression
coefficients and check the coverage proportion.
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Simulation
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Figure: Plot of the coverage proportion across a range of SNR.
The coverage proportion of the z intervals (β̂ ± 1.65σ) is far
below the nominal level of 1− α = .9, even at SNR =5. The
selective intervals (our method) always have coverage
proportion .9.

Remember this simulation.

We will return to explain the results of the simulation.
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Valid Selective Inference

Notation

The selection function Ĥ selects the hypothesis of interest,
Ĥ(y) : Y → H.

φ(y;H) be a test of hypothesis H, so reject if φ(y;H) = 1.

{y : Ĥ(y) = H} is the selection event or “the set of y’s that
lead to selecting the same hypothesis H”.

Definition (Selective type 1 error)

φ(y; Ĥ) is a valid selective test if

P0(φ(y; Ĥ(y)) = 1) ≤ α

Jason Lee Selective Inference via the Condition on Selection Framework 14



Existing methods for Selective Inference

Reduction to Simultaneous Inference: Assume that there is an
apriori set of hypotheses H that could be tested. We can
simultaneously control the type 1 error over all of H, which
implies selective type 1 error rate control for some selected
Ĥ(y) ∈ H (e.g. Scheffe’s method).

Data Splitting: Split the dataset y = (y1, y2). Let Ĥ(y1) be
the selected hypothesis, and construct the test of Ĥ(y1) using
only y2. Data splitting is “wasteful” in the sense that it is not
using all the information in the first half of the data.
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Condition on Selection Framework

Conditioning for Selective Type 1 Error Control

We can design a valid selective test φ by ensuring φ is a valid test
with respect to the distribution conditioned on the selection
event meaning

P0(φ(y;Hi) = 1|Ĥ = Hi) ≤ α

implies
P0(φ(y; Ĥ(y)) = 1) ≤ α.

Intuition

By conditioning on the selection event, we are restricting to y’s
that would have led to the same hypothesis being tested. This lets
us calibrate the test with respect to a distribution where the
selection mechanism is deterministic and can be safely ignored.

.
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More Formal argument

P0(φ(y; Ĥ(y)) = 1) =
∑
i

P0(φ(y;Hi) = 1|Ĥ = Hi)P0(Ĥ = Hi)

≤ α
∑
i

P0(Ĥ = Hi)

≤ α.

Example: Maximum of a Normal

Let y ∼ N (µ,Σ). We would like to test Hi : µi = 0 against the
alternative µi > 0. Let Ĥ(y) = Hi? , where yi? is the maximum i.e.
yi? = maxi yi. We can make a test by rejecting when yi? > c.
Condition on selection tells us to choose the cutoff c so type 1
error rate under yi? |{yi? > maxi 6=i? yi} is α.
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Outline of the Rest of the Talk

1 Review linear regression, and cast inference after variable
selection as a selective inference problem.

2 Many variable selection procedures have selection events
{y : M̂(y) = M} = {y : Ay ≤ b}, where M is the subset of
variables selected. Instead of selecting hypothesis, we will
focus on selecting subsets of variables and testing regression
coefficients of the selected variables.

3 An exact, valid selective test φ can be constructed for linear
functions H0 : η(M̂(y))Tµ = γ, using the Condition on
Selection framework without sampling or numerical
integration. This is done by deriving the conditional
distribution of ηT y, which will be a truncated normal.

4 A selective test φ can be inverted to make a selective
confidence interval. These confidence intervals control false
coverage rate, a selective type 1 error metric (Benjamini &
Yekutieli 2005).
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Setup

Model

Assume that yi = µ(xi) + εi

εi ∼ N (0, σ2).

xi ∈ Rp, y ∈ Rn, and µ =

µ(x1)
...

µ(xn)

.

Design matrix X =

x
T
1
...
xTn

 ∈ Rn×p.
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Review of Linear Regression

The best linear approximation is β0 = X†µ. Linear regression
estimates this using

β̂ = X†y = (XTX)−1XT y.

Theorem

The least squares estimator is distributed

β̂ ∼ N (β0, σ2(XTX)−1)

and
Pr
(
β0j ∈

[
β̂j ± zασ(XTX)

−1/2
jj

])
= 1− α.
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Explaining the simulation

1 The confidence intervals rely on the result that β̂ is Gaussian.

2 The variable selection procedure (marginal screening) returns
a set of variables M̂(y). In particular,

|XT
M̂
y| > |XT

−M̂y|.

3 For any fixed set M , XT
My is Gaussian, but XT

M̂
y is not

Gaussian!

Example

Let y ∼ N (0, I), and X = I. Let i? = arg max yi, then yi? is not
Gaussian. The interval yi? ± 2 is not a valid 95% confidence
interval!
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Three possible population parameters

Population parameters

1 Sub-model parameter. βM = (XT
MXM )−1XT

Mµ = X†Mµ
(advocated by the POSI group).

2 OLS parameter. In the n ≥ p regime without the linear
model assumption, β? = (XTX)−1XTµ = X†µ is the best
linear approximation.

3 The “true” parameter for p > n. Assuming a sparse linear
model µ = Xβ0, the parameter of interest is β0.

For the talk, I will focus on inference for the sub-model
parameter βM , but analagous results hold for the other two.
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Selective Inference in Linear Regression

Selective Inference reduces to testing η(M̂(y))Tµ.

1 Sub-model parameter. βM̂j = eTj X
†
M̂
µ = η(M̂(y))Tµ, where

η(M̂(y))T is row of X†
M̂

.

2 OLS parameter. eTj β
?
M̂

= eTj′X
†µ = η(M̂(y))Tµ.

3 True parameter. Under the scaling n� s2 log2 p and
restricted eigenvalue assumptions, there is a parameter βd

that satisfies
√
n
∥∥∥βd(M̂)− β0

∥∥∥
∞

= o(1), and βd is a linear

function of µ. Valid selective inference for βd implies
asymptotically valid selective inference for β0.

Testing regression coefficients reduce to testing an
adaptive/selected linear function of µ

H0 : η(M̂(y))Tµ = γ.
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Related Work

Significance testing for Lasso (Lockhart et al. 2013) tests for
whether all signal variables are found. Our framework allows
us to test the same thing with no assumptions on X and is
completely non-asymptotic and exact.

POSI (Berk et al. 2013) widen intervals to simultaneously
cover all coefficients of all possible submodels. POSI is an
example of reducing selective to simultaneous inference, and
protects against any selection procedures.

Asymptotic normality by “inverting” KKT conditions (Zhang
and Zhang 2012, Van de Geer et al. 2013, Javanmard and
Montanari 2013, Chernozhukov et al. 2013). Asymptotic
result requires consistency of the lasso, and computational
cost equivalent to solving p lasso’s.

Knockoff for FDR control in linear regression (Foygel and
Candes 2014) allows for exact FDR control for n ≥ p without
any assumptions on X.
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Marginal screening or k-most correlated

Algorithm 1 Marginal screening algorithm

1: Input: Design matrix X, response y, and model size k.
2: Compute |XT y|.
3: Let M̂ be the index of the k largest entries of |XT y|.
4: Compute β̂M̂ = (XT

M̂
XM̂ )−1XT

M̂
y
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Warmup: Marginal screening selection event

Marginal Screening Selection Event

The marginal screening selection event is a subset of Rn:{
y : ŝix

T
i y > ±xTj y, for each i ∈ M̂ and j ∈ M̂ c

}
=
{
y : A(M̂, ŝ)y ≤ b(M̂, ŝ)

}
The marginal screening selection event corresponds to selecting a
set of variables M̂ , and those variables having signs

ŝ = sign
(
XT
M̂
y
)

.
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Lasso selection event

Lasso Selection Event

β̂ = arg min
β

1

2
‖y −Xβ‖2 + λ ‖β‖1

From KKT conditions, a set of variables M̂ is selected with
sign(β̂M̂ ) = ŝ iff{

y : sign(β(M̂, ŝ)) = ŝ,
∥∥∥Z(M̂, ŝ)

∥∥∥
∞
< 1
}

= {y : Ay ≤ b}

This says that the inactive subgradients are strictly dual feasible,
and the signs of the active subgradient agrees with the sign of the
lasso estimate.

β(M, s) := (XT
MXM )−1(XT

My − λs)

Z(M, s) := XT
McXM (XT

MXM )−1s+
1

λ
XT
Mc(I −XM (XT

MXM )−1XT
M )y.
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Selection event

Selection events correspond to affine regions.

{M̂(y) = M} = {Ay ≤ b} & y|{M̂(y) = M} d
= N (µ,Σ)

∣∣{Ay ≤ b}

Figure: (n, p) = (2, 3). White, red, and blue shaded regions correspond
to different selection events. The shaded region that y falls into is where
lasso selects variable 1 with positive
sign.http://naftaliharris.com/blog/lasso-polytope-geometry/
. Jason Lee Selective Inference via the Condition on Selection Framework 31
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Constrained Gaussian

Constrained Gaussians

The distribution of y ∼ N (µ, σ2I) conditional on
{y : Ay ≤ b} has density 1

Pr(Ay≤b)φ(y;µ,Σ)1 (Ay ≤ b).

Ideally, we would like to sample from the density to
approximate the sampling distribution of our statistic under
the null. This is computationally expensive.

For testing regression coefficients, we only need distribution of
ηT y|{Ay ≤ b}.

Computationally Tractable Inference

It turns out

ηT y
∣∣{Ay ≤ b, Pη⊥y} d

= TruncatedNormal.

Using this distributional result, we avoid sampling and integration.
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Geometric Intuition

Figure: A picture demonstrating that the set {Ay ≤ b} can be
characterized by {V− ≤ ηT y ≤ V+}. Assuming Σ = I and ||η||2 = 1,
V− and V+ are functions of Pη⊥y only, which is independent of ηT y.
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Truncated Normal

Corollary

The distribution of ηT y conditioned on {Ay ≤ b, Pη⊥y} is a
(univariate) Gaussian truncated to fall between V−(Pη⊥y) and
V+(Pη⊥y), i.e.

ηT y | {Ay ≤ b, Pη⊥y} ∼ TN(ηTµ, σ2 ‖η‖2 ,V−,V+)

TN(µ, σ, a, b) is the normal distribution truncated to lie between a
and b.
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Pivotal quantity

Theorem

Let F (x;µ, σ2, a, b) denote the CDF of TN(µ, σ, a, b).
Then F (ηT y; ηTµ, σ2 ‖η‖2 ,V−,V+) is a pivotal quantity

F (ηT y; ηTµ, σ2 ‖η‖2 ,V−,V+) ∼ Unif(0, 1).
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Figure: Pivot is uniform.
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Testing regression coefficients

Coefficients of selected variables are adaptive linear functions

Recall, βM̂ = X†
M̂
µ, and β̂M̂ = X†

M̂
y. By choosing ηj = X†T

M̂
ej ,

we have ηTj y = β̂M̂j .

Theorem

Let H0 : βM̂j = βj . The test that rejects if

F (β̂M̂j ;βj ;σ
2 ‖η‖2 ,V−,V+) /∈

(α
2
, 1− α

2

)
is a α-level selective test of H0. Choice of (α2 , 1−

α
2 ) is arbitrary.

We can optimize endpoints to (a, 1− α+ a) such that the interval
is UMPU, at the cost of more computation.

Other parameter targets

The same result holds exactly for the OLS parameter β? and βd.
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Algorithm 2 Hypothesis test for selected variables

1: Input: Design matrix X, response y, model size k.
2: Use variable selection method (marginal screening or Lasso) to

select a subset of variables M̂ .
3: Test H0 : βM̂j = βj .

4: Let A = A(M̂, ŝ) and b = b(M̂, ŝ). Let ηj = (XT
M̂

)†ej .

5: Compute F (β̂M̂j ;βj , σ
2||ηj ||2,V−,V+).

6: Output: Reject if F (β̂M̂j ;βj ;σ
2 ‖η‖2 ,V−,V+) /∈

(
α
2 , 1−

α
2

)
.
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Confidence Intervals by Inverting

Confidence Intervals

Confidence interval Cj is all βj ’s, where a test of H0 : βM̂j = βj
fails to reject at level α.

Cj = {βj :
α

2
≤ F (β̂M̂j ;βj , σ

2||ηj ||2,V−,V+) ≤ 1− α

2
}

Interval [Lj , Uj ] is found by univariate root-finding on a monotone
function. Solve

F (β̂M̂j ;Lj , σ
2||ηj ||2,V−,V+) =

α

2

F (β̂M̂j ;Uj , σ
2||ηj ||2,V−,V+) = 1− α

2

Similarly, the endpoints are arbitrary and can be chosen to be
UMAU.
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Selective Inference and FCR

Lemma (Valid selective confidence intervals)

These are valid selective intervals,

Pr
(
βM̂j ∈ Cj

)
= 1− α.

False coverage rate (FCR) is the confidence interval analog of
FDR. FCR is also controlled.

E
[

Number not covering and constructed

Number constructed

]
≤ α
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Comparison to data splitting and POSI

BMI BP S3 S5
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Figure: Diabetes dataset comparison of four methods: selection-adjusted
(black), unadjusted (red), data splitting (green), and POSI (blue).

Variable S3 is no longer significant after adjusting for model
selection.

Our selective intervals are approximately the same as the
z-intervals for significant variables. PoSI creates narrower
intervals than data splitting (1.36 vs

√
2 wider than nominal).

Data splitting is inadmissible since a variant Condition on
Selection dominates data splitting.
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Non-Gaussian noise and estimated σ2
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Figure: Plot of nominal coverage vs the actual coverage proportion for
diabetes dataset. Simulation is done by using 2000 iterations of residual
bootstrap with estimated σ̂2. The adjusted intervals always cover at the
nominal level, whereas the z-test is always below.
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Selective Intervals for sparse β0 in p > n
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Figure: (n, p, s) = (25, 50, 5) with only the first 20 coefficients being
plotted. Data is generated from y = Xβ0 + ε with a SNR of 2. The
Javanmard-Montanari high-dimensional z-intervals do not guarantee
selective coverage.
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Follow-up work

Testing the goodness of fit of the selected model,
H0 : (I − PM̂ )µ = 0 (Lee et al. 2013)

Selective t-tests for unknown σ2. Non-Gaussian noise can be
handled via CLT (Tian & Taylor 2015).

Non-affine regions, only need to intersect a ray with the
region to design exact conditional tests, which can be done by
root-finding for “nice” sets (Lee et al. 2013, Loftus and
Taylor 2014).

Marginal screening followed by Lasso (Lv & Fan 2008),
forward stepwise regression, isotonic regression, elastic net,
AIC/BIC criterion with subset selection, λ chosen via hold-out
set, square-root lasso (Lee & Taylor 2014, Tian et al. 2015).

Use first half of data to select model, then do inference using
the entire dataset via putting constraints only on the first half.
This variant of Condition on Selection selects the same model
as data splitting, but is more powerful under a strong
screening assumption (Fithian, Sun, Taylor 2014).

Jason Lee Selective Inference via the Condition on Selection Framework 47



Improving Power

Intuition: Condition on less.
“Selected” Model (Fithian, Sun, Taylor 2014) If
P⊥
M̂
µ = 0 (screening) , then we can condition on only PM̂−jy

instead of P⊥η y. This results in exactly the same test, since

ηT y is conditionally independent of P⊥
M̂
y. If you run selection

procedure (lasso) on only half the data (A1y1 ≤ b1) and use
all of the data for inference, then the “selected test” benefits
from conditioning on less. This test statistic can be more
powerful, but requires MCMC. If screening is violated, type 1
error is not controlled, so this modification should only be
used when the user is confident in the screening property.

Union over signs (Lee et al. 2013). For lasso and
screening, we conditioned on signs and the selected variables.
We can union over all 2|M | signs to condition on a larger set.
ηT y|{Pη⊥y, M̂ = M} is a truncated Gaussian on a union of
intervals. Union over signs makes a huge difference for
lasso.
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Beyond Selective Inference: Combinatorial Detection

Motivating example: Submatrix Detection/Localization problem
(Ma and Wu 2014, Balakrishnan and Kolar 2012) with scan
statistic y? = maxC∈S

∑
i∈C yi.

Exact tests can be designed for the intractable global
maximizer statistic, and the tractable sum-test. The tests
have type 1 error exactly α and detection thresholds that
match the minimax analysis.

Heuristic greedy algorithm. Shabalin and Nobel 2013
propose a greedy algorithm to approximate the global
maximizer. By conditioning on the “path” of greedy
algorithm, we obtain an exact test for the output of the
greedy algorithm!
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Future Work

Non-convex regularizers (SCAD, MCP). The selection event
depends on the optimization algorithm and the optimality
conditions.

More automatic way of defining the selection event without
specific analysis for each (algorithm,hypothesis class) pair.
Can it be generated in an online fashion as a primal-dual
solver progresses e.g. using dual solutions?

Given a single dataset and class of queries/tests, can we
control validity of an adaptive sequence of queries/tests?
Implication: This would allow different research groups
to share a dataset and formulate hypotheses after
observing the outcome of a previous group’s study.
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Conclusion

Takeaways

Standard workflow of selecting relevant variables, then
reporting confidence intervals/ significance tests only of
selected variables is incorrect.

Condition on Selection allows you to properly account for the
selection procedure by calibrating tests with respect to the
conditional distribution. The computation time is negligible
compared to the selection algorithm.

The Condition on Selection framework applies to a large class
of selection procedures: AIC, BIC, lasso, forward stepwise,
marginal screening, CV for λ, combinatorial testing . . .

Science is sequential. There is important future work in
controlling the type 1 error of adaptively sequence of
queries/tests.
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High-dimensional case

Assume that y = Xβ0 + ε.

What η should we use?

We can test any ηTµ = γ, so how should we choose η?
Answer: Debiased Estimator.

β̂d := β̂ +
1

n
ΘXT (y −Xβ̂)

Observation 1: If n ≥ p and Θ = Σ̂−1, then β̂d = β̂LS . This
suggests that we should choose an η corresponding
“somehow” to the debiased estimator because this worked in
the low-dimensional regime.
Observation 2: The debiased estimator is affine in y, if the active
set and signs of the active set are considered fixed.
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Recall that β̂ =

[
(XT

M̂
XM̂ )−1XT

M̂
y − λ( 1

nX
T
M̂
XM̂ )−1sM̂

0

]
.

Plug this into β̂d = β̂ + 1
nΘXT (y −Xβ̂) to get

β̂d =
1

n
ΘXT y+(I−ΘΣ̂)

[
(XT

M̂
XM̂ )−1XT

M̂
y − λ( 1

nX
T
M̂
XM̂ )−1sM̂

0

]

Main Idea

Replace y with µ to make a population version.

βd(M̂, ŝ) : =
1

n
ΘXTµ+ (I −ΘΣ̂)

[
(X†

M̂
µ− λ( 1

nX
T
M̂
XM̂ )−1sM̂

0

]
= Bµ+ h

βd is an affine function of µ.
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Selective inference for βd.

Condition on Selection framework allows you to make a selective
confidence interval for βd

M̂
.

Selective intervals for βd

Choose η = eTj B. We would like to test βdj = γ, which is
equivalent to

ηTµ = γ − ηTh = γ̃.

Thus using the framework we get,

Pr(βd
j,M̂
∈ Cj) = 1− α.
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Why should you care about covering βd???

Theorem

Under Xi ∼ N (0,Σ) and n > s2 log2 p (same assumptions as
Javanmard & Montanari 2013, Zhang and Zhang 2012, and Van
de Geer et al. 2014)∥∥∥βd(M̂, ŝ)− β0

∥∥∥
∞
≤ C s log p

n
.

Theorem

Under the same conditions as above and for any δ > 0,

Pr(βd
j,M̂
∈ Cj ±

δ√
n

) ≥ 1− α
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Valid Selective Inference

Notation

The selection function Ĥ selects the hypothesis of interest,
Ĥ(y) : Y → H.

φ(y;H) be a test of hypothesis H, so reject if φ(y;H) = 1.

φ(y;H) is a valid test of H if P0(φ(y;H) = 1) ≤ α.

{y : Ĥ(y) = H} is the selection event.

F ∈ N(H) if F is a null distribution with respect to H.

Definition

φ(y; Ĥ) is a valid selective test if

PF (φ(y; Ĥ(y)) = 1|F ∈ N(Ĥ)) ≤ α
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Condition on Selection Framework

Conditioning for Selective Type 1 Error Control

We can design a valid selective test φ by ensuring φ is a valid test
with respect to the distribution conditioned on the selection
event meaning

∀F ∈ N(Hi), PF (φ(y;Hi) = 1|Ĥ = Hi) ≤ α,

then

PF (φ(y; Ĥ(y)) = 1|F ∈ N(Ĥ))

=
∑

i:F∈N(Hi)

PF (φ(y;Hi) = 1|Ĥ = Hi)PF (Ĥ = Hi|F ∈ N(Ĥ))

≤ α
∑

i:F∈N(Hi)

PF (Ĥ = Hi|F ∈ N(Ĥ))

≤ α
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Lasso Selective Intervals

Solve Lasso at some λ, and construct confidence intervals using
previous algorithm.
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Figure: 90% confidence intervals for βM̂1 for two different settings
(n, p) = (100, 50) and (n, p) = (100, 200), over 25 simulated data sets.
The truth β0 has five non-zero coefficients, all set to 5.0, and the noise
variance is 0.25. A green bar means the confidence interval covers the
true value while a red bar means otherwise.
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Coarsest Selection Event

Coarsest selection event

Recall that a subset/sign pair (S, s) is in bijection with a selection
event. We only need to condition on the selection for the variables
S, which determines η. Selection event for only variables S:{

y : M̂(y) = M
}

=
⋃

s∈{−1,1}|M̂|
{y : (M̂(y), s(y)) = (M, s)}

=
⋃

s∈{−1,1}|M̂|
{y : A(M, s)y ≤ b(M, s)}

Condition on the coarsest partition where η is still measurable.

The set is a union of linear constraints. Pivotal quantity,
hypothesis tests, and intervals are valid for union of linear
constraints.

Strictly more powerful, and empirically performs well.
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Coarsest Selection event

X3
X1

X2

Y

{
1,3

}
 selected

Figure: Coarsest selection event corresponds to the union of the two
yellow regions. Before, we conditioned on one of the yellow wedges.
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Figure: Light blue intervals are using the coarsest selection event or
union of regions and dark blue are using the selection event that is one
region. The simulated data featured n = 25, p = 50, and 5 true non-zero
coefficients; only the first 20 coefficients are shown. The simple intervals
are as good as the minimal intervals on the left plot; the advantage of
the minimal intervals is realized when the estimate is unstable and the
simple intervals are very long, as in the right plot.
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Testing goodness-of-fit

We would like to test
H0 : β0−Ŝ = 0.

This means that all the true signal variables have been found,
support(β0) ⊂ Ŝ.

We can test this by checking whether the unselected variables help
explain the residual, or H0 :

∥∥(I − PŜ)µ
∥∥
∞ = 0.
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Testing goodness-of-fit

Letting j? := argmaxj |eTj (I − PŜ)y| and sj := sign(eTj (I − PŜ)y),
we set

ηj? = sj?(I − PŜ)ej? ,

and test H0 : ηTj?µ = 0. This is a linear function of y.

Corollary

Let H0 :
∥∥(I − PŜ)µ

∥∥
∞ = 0. Then, the test which rejects when{
F

[V−,V+]
0, σ2||η∗j ||2

(ηTj?y) > 1− α
}

is level α,

P
(
F

[V−,V+]
0, σ2||ηj? ||2

(ηTj?y) > 1− α
∣∣ H0

)
= α.
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Figure: P-values for H0,λ at various λ values for a small
(n = 100, p = 50) and a large (n = 100, p = 200) uncorrelated Gaussian
design, computed over 50 simulated data sets. The true model has three
non-zero coefficients, all set to 1.0, and the noise variance is 2.0. We see
the p-values are Unif(0, 1) when the selected model includes the truly
relevant predictors (black dots) and are stochastically smaller than
Unif(0, 1) when the selected model omits a relevant predictor (red dots).
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Figure: P-values for H0,λ at various λ values for a small
(n = 100, p = 50) and a large (n = 100, p = 200) correlated (ρ = 0.7)
Gaussian design, computed over 50 simulated data sets. The true model
has three non-zero coefficients, all set to 1.0, and the noise variance is
2.0. Since the predictors are correlated, the relevant predictors are not
always selected first. However, the p-values remain uniformly distributed
when H0,λ is true and stochastically smaller than Unif(0, 1) otherwise.

Jason Lee Selective Inference via the Condition on Selection Framework 67



Other applications of Condition on Selection Framework

1 False discovery rate control in linear regression. Selective
inference with the Benjamini-Yekutieli procedure ensures FDR
control in the n > p regime. By combining with recent work
on debiased estimators βd, we can ensure FDR control in
sparse high-dimensional linear regression.

2 Scan statistics and approximate scan statistics. We work
out an exact test based off the scan statistic scan statistic

z? = max
C∈S

∑
i∈C

zi.

Frequently scan statistics are too expensive to compute, and
greedy/approximate algorithms are used to approximate the
scan statistic. We work out an exact test for these algorithms
too, using the Condition on Selection framework.
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