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1 Theory

1.1 Abstract framework

A foundational concept in modern machine learning is to construct models from data by balancing the
complexity of the model with the discrepancy between the model and the data. Therefore, one of the main
concerns is to define meaningful ways to quantify complexity and discrepancy. To formulate an abstract
framework, consider a class F of models, endowed with a set of operations on its elements. We define a
function C : F 7→ R+ that quantifies the complexity of these models. Any model with low values of C is
deemed simple in this class. Furthermore, we assume that F is spanned by the simple models induced by C.
In addition, consider a function DY : F 7→ R+ that measures the discrepancy between the data Y and any
given model. In other words, any model with high values of DY cannot explain properly the data. Thus the
problem reduces to determine reasonable choices of C and DY for a given application. Once these are made,
one common scheme to construct the aforementioned model is to solve an optimization problem. Usually,
this problem has the form

minimize
X∈F

DY (X) subject to C(X) ∈ S (1)

where S ⊂ R+ indicates the allowed complexity of the elements used to explain Y or

minimize
X∈F

DY (X) + λ C(X) (2)

where λ ≥ 0 is a regularization parameter that balances the trade-off between the discrepancy and complexity.
By using an optimization problem, we have implicitly imposed a new constraint on C and DY . Specifically,
they must be chosen in such a way that (1) or (2) becomes a tractable problem.

1.2 rank and trace-norm

We now make more concrete assumptions on our setting. In what follows, we assume the data Y is known and
we denote f = DY . In several applications, both the models and the data can be represented in a meaningful
way as a matrix with real entries, and therefore F becomes a class of matrices. Thus the question is how to
define a measure of complexity for these models. A theoretically sound measure of complexity is the rank.
This is consistent with our abstract formulation as classical results in linear algebra show that any matrix
can be decomposed as a linear combination of rank-1 matrices. Therefore, low-rank matrices are deemed
simple and (1) becomes

minimize
X

f(X) subject to rankX ≤ k (3)

Unfortunately, this leads to an untractable optimization problem. For this reason, several research has
been done to find a suitable regularization of the rank. One method that has received a huge amount of
attention is the trace-norm ‖ · ‖tr, defined as the sum of the singular values of X. The trace-norm promotes
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low-rank by minimizing the `1-norm of the vector containing the singular values of X, thus encouraging its
sparsity. It is of particular interest to consider (2) is this case

minimize
X∈F

f(X) + λ ‖X‖tr (4)

which becomes tractable. This relaxation proves to be extremely useful in a wide array where rank constraints
are needed [1].

Although the trace-norm is a successful regularizer, it does not seem to be widely known that there might
be additional ways to regularize the rank.

1.3 The max-norm

A different approach is to further explore the consequences of considering a matrix X of size m × n as an
operator from `p to `q seen as finite-dimensional Banach spaces. A natural way to quantify the magnitude
of X is to consider its corresponding operator norm

‖X‖`p→`q = sup
z 6=0

‖Xz‖`q
‖z‖`p

where ‖ · ‖`p is the standard `p-norm. Unfortunately the aforementioned norms are computationally in-
tractable in several cases [2]. Furthermore, its is known that it is computationally hard to approximate them
in these cases. In particular, its is NP-hard to approximate it to any constant factor for 1 < q < p < 2,
1 < q < 2 < p and 2 ≤ q < p whereas it is O(2(logn)1−ε) hard in 1 < q = p < 2 and 2 < q = p.

However, the operator interpretation allows us to use factorizations as a meaningful way of quantifying
the complexity of X. Namely, we can fix a Banach space Z and a pair of operators U : Z 7→ `q and V : `p 7→ Z
such that X = UV . In this case, we would like to find the simplest among all such decompositions. The
complexity is quantified as

γZ(X) = inf{‖U‖Z→`q‖V ‖`p→Z : X = UV }

A classical result from Banach spaces theory shows that for fixed Z, γZ defines a norm over the space of
operators from `p to `q. Of particular interest for us will be the case Z = `2, q =∞ and p = 1. We obtain
γ2

γ2(X) = inf{‖U‖`2→`∞‖V ‖`2→`∞ : X = UV }

which is formulated in terms of norms that are computationally tractable. To make the connection with the
singular value decomposition clearer, it is custom to define X = UV T . In this case, a standard result from
analysis shows that ‖V T ‖`1→`2 = ‖V ‖`2→`∞ , so that

γ2(X) = inf{‖U‖`2→`∞‖V ‖`2→`∞ : X = UV T }

Thus we have our first definition

Definition 1.1. The max-norm of a matrix X is

‖X‖max = γ2(X) = inf{‖U‖`2→`∞‖V ‖`2→`∞ : X = UV T }
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To explain why max-norm is a suitable name for γ2, denote xTi the rows of X and consider the norm
`2 → `∞

‖X‖`2→`∞ = sup
‖z‖`2=1

‖Xz‖`∞

= sup
‖z‖`2=1

max
i
|〈xi, z〉|

≤ sup
‖z‖`2=1

max
i
‖xi‖`2‖z‖`2

= max
i
‖xi‖`2

Since the inequality becomes equality for zi = x?/‖x?‖`2 with x? ∈ arg maxi ‖x‖`2 , we see that ‖X‖`2→`∞

is the maximum `2-norm of the rows of X. This clearly implies

‖X‖max = inf
X=UV T

max
i,j
‖ui‖`2‖vj‖`2 (5)

where ui are the rows of U and vj are the rows of V . This expression suggests that the max-norm measures
complexity by looking at the maximum norms of the rows of the factors U and V for X = UV T . But more
can be said aside from these facts. We will show that the max-norm has a handful of interesting properties.
For example, the max-norm is invariant under the adjoint operator, i.e. ‖XT ‖max = ‖X‖max, and so is its
dual. This is clear from the definition, as

‖XT ‖max = inf{‖U‖`2 7→`m∞
‖V ‖`2 7→`n∞

: XT = UV T }
= inf{‖U‖`2 7→`m∞

‖V ‖`2 7→`n∞
: X = V UT }

= inf{‖U‖`2 7→`m∞
‖V ‖`2 7→`n∞

: X = V UT }
= ‖X‖max

and

‖XT ‖∗max = sup
‖Y ‖max≤1

trace (XT )TY

= sup
‖Y ‖max≤1

traceY X

= sup
‖Y T ‖max≤1

traceY TX

= sup
‖Y ‖max≤1

traceY TX

= ‖X‖∗max
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These properties allows us to express the dual of the max-norm as

‖X‖∗max = ‖XT ‖∗max

= sup
‖Y ‖max≤1

traceXY

= sup
‖Y T ‖max≤1

traceXY T

= sup
‖Y ‖max≤1

∑
i

〈xi, yi〉

= sup
‖Y ‖max≤1

∑
i,j

Xi,jYi,j

where xi and yi represent the rows of X and Y respectively. By using the decomposition Y = UV T we
obtain

‖X‖∗max = sup
‖Y ‖max≤1

∑
i,j

Xi,j〈ui, vj〉

where ui and vj where defined previously. This expression hides a very deep relationship with the theory
of absolutely summing operators in Banach space theory. The connection is made through Grothendieck’s
inequality. We state the theorem in a slightly different form as in the standard reference [3], with the notation
changed to fit ours [4]

Theorem 1.1. There is a universal constant KG for which, given any Hilbert space H, any n ∈ N, any
n× n scalar matrix (Xi,j) and any vectors u1, . . . , un and v1, . . . , vn in BH = {x : ‖x‖H ≤ 1}, such that∣∣∣∣∣∣

∑
i,j

Xi,j〈ui, vj〉

∣∣∣∣∣∣ ≤ KG max


∣∣∣∣∣∣
∑
i,j

Xi,jsitj

∣∣∣∣∣∣ : |si| ≤ 1, |tj | ≤ 1


The best possible value for the constant KG is called Grothendieck’s constant and its unknown so far.

However, bounds are known and 1.5 < KG < 1.8. This clearly implies

‖X‖∗max ≤ KG max


∣∣∣∣∣∣
∑
i,j

Xi,jsitj

∣∣∣∣∣∣ : |si| ≤ 1, |tj | ≤ 1


This inequality raises the question: is there any object defined as the right-hand side? The answer is yes

and, surprisingly, it is the `∞ → `1-norm. Indeed, let v be any vector such that ‖v‖`∞ ≤ 1. Then |vj | ≤ 1
and

‖Xv‖`1 =
∑
i

∣∣∣∣∣∣
∑
j

Xi,jvj

∣∣∣∣∣∣
It is clear that among all ui such that |ui| ≤ 1 we have

‖Xv‖`1 ≥
∑
i

ui
∑
j

Xi,jvj =
∑
i,j

Xi,juivj
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Since the equality becomes an equality for ui = sign
∣∣∣∑j Xi,jvj

∣∣∣ we have

‖X‖`∞→`1 = sup
‖v‖`∞≤1

‖Xv‖`1 = max

∑
i,j

Xi,juivj : |ui| ≤ 1, |vj | ≤ 1


from which the inequality

‖X‖∗max ≤ KG‖X‖`∞→`1

follows. This suggests that the dual of the max-norm is equivalent to the ‖X‖`∞→`1 norm. In fact, to prove
the remaining inequality, we note that, for a matrix decomposition Y = UV T we have∑

i,j

Xi,jsitj : |si| ≤ 1, |tj | ≤ 1

 ⊂
∑

i,j

Xi,j〈ui, vj〉 : Y = UV T , ‖Y ‖max ≤
√
mn


Indeed, for a given set of values |si|, |tj | ≤ 1 we can construct ui = si

∑
i ei and vj = tj

∑
i ei, where {ei}

are the elements of the canonical basis. In this case clearly ‖u1‖`2‖vj‖`2 ≤ |si||tj |
√
mn and the inclusion

follows. Remark that there might be better constants to obtain the inclusion. Therefore, by taking supremum
over the two sides

‖X‖`∞→`1 ≤ sup
‖Y ‖max≤

√
mn

∑
i,j

Xi,jYi,j

We may rescale the set {‖Y ‖max ≤
√
mn } so that

‖X‖`∞→`1 ≤
√
mn sup

‖Y ‖max≤1

∑
i,j

Xi,jYi,j =
√
mn ‖X‖∗max

This inequality implies
‖X‖`∞→`1 ≤ ‖X‖∗max ≤ KG‖X‖`∞ 7→`1

or, by taking duals
1

KG
‖X‖∗`∞ 7→`1 ≤ ‖X‖max ≤ ‖X‖∗`∞ 7→`1

The significance of this inequality lies on the fact that the dual `∞ → `1-norm belongs to a class called
nuclear norms. In fact, we can write

‖X‖∗`∞→`1 = inf

{
‖σ‖1 : X =

∑
i

σiuiv
T
i , ‖ui‖`∞ = 1, ‖vi‖`∞ = 1

}
This result has its origins on trace duality and it is beyond the scope of this work. The interested reader
may check the corresponding references [3, 4]. The equivalence with the matrix norm implies

‖X‖max ≈ inf

{
‖σ‖`1 : X =

∑
i

σiuiv
T
i , ‖ui‖`∞ = 1, ‖vi‖`∞ = 1

}
The trace-norm belongs to the same class and, in fact, we have the equivalent expression

‖X‖tr = inf

{
‖σ‖`1 : X =

∑
i

σiuiv
T
i , ‖ui‖`2 = 1, ‖vi‖`2 = 1

}
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This shows that our new approach to measuring complexity led us to a new method of regularizing the
rank of a matrix. Indeed, the trace-norm promotes low-rank by using factors with unit `2-norm whereas the
max-norm promotes low-rank by using factors with unit `∞-norm. This suggests that the max-norm ought
to be able to outperform the trace-norm in cases when the data is uniformly bounded.

1.4 Computation of the max-norm

The theoretical analysis performed in the previous section suggest a tractable method to compute the max-
norm. To do this, we try to solve

minimize
U,V

max
i,j
‖ui‖2`2/2 + ‖vj‖2`2/2

subject to X = UV T

The objective is to find an equivalent convex formulation to this problem. Using standard optimization
techniques, this program can be formulated equivalently as

minimize
U,V

t

subject to X = UV T

‖ui‖2`2 ≤ t
‖vj‖2`2 ≤ t

By using the fact that ‖ui‖2`2 = (UUT )i,i and ‖vj‖2`2 = (V V T )j,j we obtain

minimize
U,V

t

subject to X = UV T

diagUUT ≤ t
diagV V T ≤ t

This problem is non-convex, as X = UV T is not a convex constraint. But we can make the following
observation [

U
V

] [
UT V T

]
=

[
UUT X
XT V V T

]
This matrix is clearly symmetric and positive definite. From this, we may use the change of variables
UUT = W1 and V V T = W2 to write the equivalent program

minimize
W1,W2

t

subject to

[
W1 X
XT W2

]
� 0

diagW1 ≤ t
diagW2 ≤ t

This is an SDP and there are several available techniques to solve it. The problem of computing the
max-norm is therefore tractable.
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1.5 Connections to Quadratic Integer Programming

An interesting connection can be made between the max-norm and some Quadratic Integer Programs (QIP).
For example, consider a generic QIP

maximize
x

xTAx

subject to xi ∈ {−1, 1}

A standard way to produce a relaxation to this problem is to introduce vectors s, t and define

maximize
s,t

sTAt

subject to si ∈ {−1, 1}, tj ∈ {−1, 1}

This is the so-called Grothendieck’s problem [5]. We can further relax the integer constraints by imposing

maximize
s,t

sTAt

subject to |si| ≤ 1, |tj | ≤ 1

which is precisely ‖A‖∗max. As a particular example, consider the QIP formulation of the max-cut problem
for an undirected graph G = (V,E)

maximize
x

1

2

∑
(i,j)∈E

(1− xixj)

subject to xi ∈ {−1, 1}

The celebrated Goemans-Williamson SDP relaxation of this problem “lifts” each node by a vector ui and
reformulates the problem as

maximize
ui

1

2

∑
(i,j)∈E

(1− 〈ui, uj〉)

subject to 〈ui, uj〉 ∈ {−1, 1}

We can interpret 〈ui, uj〉 as the component of a matrixX so that the objective becomes 1
2

∑
(i,j)∈E (1−Xi,j)

and X = UUT , where ui are the rows of U . This further imposes the constraint X � 0. The constraint
〈ui, uj〉 ∈ {−1, 1} can be relaxed as usual by |〈ui, uj〉| ≤ 1, or equivalently, |Xi,j | ≤ 1. This constraint can
be reformulated as ‖X‖max ≤ 1 by considering X = UV T and consequently we can solve

maximize
X

1

2

∑
(i,j)∈E

(1−Xi,j)

subject to ‖X‖max ≤ 1, |Xi,j | ≤ 1

which also shows a connection between the max-norm and different problems related to discrete optimization.

1.6 Collaborative filtering interpretation

The canonical example of a collaborative filtering problem is the Netflix problem. Let X ∈ Rm×n,m > n
be an matrix with observed entries Xij , (i, j) ∈ Ω. Let every row of X represent a user and every column, a
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movie. The entries of X are user ratings of movies. A rating is positive if a user likes a movie and negative
if the a user dislikes a movie.

Consider the problem
minimize

Y
‖Y ‖max

subject to sgn(Xij)Yij ≥ 1, (i, j) ∈ Ω

We are fitting a regularized matrix, Y to our data, the observed entries of X. Y has a low rank factorization
Y = UV T hence Yij = uiv

T
j , where ui is the i-th row of U and vi is the i-th row of V . We can interpret ui

as a feature vector for user i and the vi as a linear classifier that classifies the users into users that like and
dislike movie j. The constraint sgn(Xij)Yij ≥ 1, (i, j) ∈ Ω ensures that the classifiers for movie j correctly
classifies users who have rated the movie. The max-norm lends itself very well to this application because
user preferences are uniformly bounded data.

Regularizing using the max-norm can be interpreted as finding a linear classifier for every movie that
separates the users who like and dislike the movie with a large margin [6]. Given a set of linearly separable
data with feature vectors ui ∈ Rn and labels li ∈ {−1, 1}, i = 1, . . . , n, the linear classifier, v that maximizes
the margin between the two classes is the solution to

minimize
w,b

1

2
‖v‖2

subject to li(v
Tui − b) ≥ 1, i = 1, . . . , n

Recall the definition of the max-norm as

‖X‖max := inf
{
‖U‖2,∞ ‖V ‖2,∞ : X = UV T

}
where ‖X‖2,∞ is the maximum 2-norm of the rows [7]. Hence, by minimizing the max-norm of Y , we are
maximizing the minimum margin with which the linear classifiers (rows of V ) separate users.

2 Experiments

2.1 Semi-supervised learning

We are given a set of data xi, i = 1, . . . , n that we would like to cluster. Some of the data xi, i ∈ Ω are
labeled but most are unlabeled. We first construct an k-nearest neighbor graph, G, with weights wij =

max(di(j), dj(i)) where di(j) = e
−
‖xi−xj‖

2σ2
i and σi is the distance from xi to its kth nearest neighbor. We

then build the weighted affinity matrix A of G and sort the labeled data into their respective clusters. Hence,
we edit the entries of A corresponding to labeled data.

Aij =

{
1 xi and xj are in the same class.

−1 xi and xj are not in the same class.
∀i, j ∈ Ω

We then learn B, a regularized version of our raw affinity matrix A by solving

minimize
B

‖A−B‖Fro + λ ‖B‖max

and use spectral clustering on B to cluster our data. Ideally, we would like B to be block diagonal, with
each block corresponding to a cluster.
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We test our method on the Iris dataset and the MNIST dataset. The Iris dataset consists of three classes.
The first two are linearly separable but the third class is not linearly separable from the first two. We plot our
learned affinity matrix versus raw affinity matrix in Figure 1. We also use our method to cluster handwritten
digits in the MNIST dataset. The MNIST dataset consists of images of handwritten digist 0 thru 9. The
digits 3 and 5 and 4 and 9 are known to be hard to cluster. We plot our learned affinity matrix versus raw
affinity matrix in Figures 2 and 3.

2.2 Matrix Completion

In matrix completion, there is an underlying matrix Y that is only partially observed, and the goal is to
recover the entire matrix. This problem arises in the setting of the collaborative filtering. In the Netflix
problem, Y corresponds to a matrix of user-movie ratings; this matrix is extremely sparse since most users
have only watched a small subset of the movies. Thus the recovery problem corresponds to predicting
unobserved user-movie ratings.

This is a highly under-determined problem, but under the prior that Y is low rank (i.e. rank (Y ) <
min(n,m)) the trace-norm heuristic succeeds, under certain assumptions on the distribution of singular
vectors(CItations needed). Due to the intimate connection between the max-norm, rank, and trace-norm,
we study the performance of the max-norm heuristic for matrix completion. Previous work on real-world
datasets (Movielens and Netflix) demonstrate that the max-norm outperforms the trace-norm for collabora-
tive filtering tasks. We focus our experiments on the problem of exact matrix completion, instead of noisy
real-world data to better understand the theoretical properties of both norms.

The two optimization problems we compare are:

minimize
X

‖X‖tr
subject to Xij = Mij , (i, j) ∈ Ω,

X � 0.

and
minimize

X
‖X‖2,∞

subject to Xij = Mij , (i, j) ∈ Ω,

X � 0.

In our experimental setup, Y ∈ Rn×n is generated as Y = V V T , where each entry of V ∈ Rn×r is random:
Vij = ±1 with probability half. Over the experiments, the rank of Y is varied by varying the number of
columns of V and ‖Ω‖ is chosen as multiples of the degrees of freedom of a rank r symmetric matrix. We

declare the recovery succesful if
‖X−Y ‖Fro
‖Y ‖Fro

< 1e− 3. The results are summarized in Figure 2.2. We observe

that the max-norm is more succesful than the trace-norm at recovering low-rank matrices generated from
sign vectors. At 2 × d.o.f. samples, the max-norm frequently succeeds,yet the trace-norm fails. This is
expected since the max-norm measures the complexity of a matrix in terms of the size of its decomposition
in the space of sign vectors. These experimental results indicate that succesful recovery for the max-norm
requires only O(nr) observed entries. In our future work, we will study the max-norm recovery guarantees
similar to guarantees for the trace-norm given by CANDES, RECHT ET AL.
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3 k-Planes Problem

Given a set of k-planes, the goal is determine a segmentation/clustering of the points according to the plane
they belong to. Recent work [8] proposes to solve the following program:

minimize ‖Z‖tr
subject to X = XZ.

The recovered matrix Z is then used to form an affinity matrix Z̃ = Z+ZT and spectral clustering is applied.
In the ideal case, Z will be block-diagonal because any point can be expressed as a linear combination of
points within its plane. Thus Z = diag(Z1, . . . ,Zk). Since the ideal Z is block-diagonal, it has small max-
norm since the max-norm measures the complexity of a matrix in terms of a decomposition into sign-vectors.
Thus it is natural to instead solve the following program:

minimize ‖Z‖max

subject to X = XZ.

We compare the performance of the trace-norm and max-norm on several synthetic datasets and the Hopkins
155 dataset [9], the standard motion segmentation benchmark dataset for the k-planes problem. The max-
norm slightly outperforms the trace-norm in the experiments we attempted. We lea

Table 1: k-planes Segmentation Results
(d1, . . . , dk;D) Max-Norm Trace-Norm (Max,Tie,Trace)

(1 1 3 3; 6) 4.66% 8.15% (67,12,21)
(1 2 3 4; 8) 1.81% 2.22% (39,30,31)

(2 2 3; 5) 7.80% 12.67% (64,11,25)
Kanatanaki 1 0% 0% NA
Kanatanaki 2 0% 0% NA
Kanatanaki 3 0% 0% NA

Table 2: Table of results for k-planes. (d1, . . . , dk;D) indicates the k different dimensions of each plane and
D is the ambient dimension. The error rates for the max-norm and trace-norm are reported in columns 2 and
3. The 4th column indicates the number of times that the max-norm strictly outperformed the trace-norm,
the number of ties, and the number of times trace-norm strictly outperformed the max-norm. The first 3
experiments are from synthetically generated data and averaged over 100 trials. The last 3 are from the
Hopkins 155 motion segmentation dataset.

4 Future Work

We proposed a relatively unstudied norm that promotes low rank and block-diagonality. Several experiments
demonstrate that using this norm as a regularizer leads to block-diagonal similarity matrices, which are easily
clustered/classified. This indicates that max-norm regularization is extremely promising in supervised and
unsupervised learning, due to the block-diagonal promoting properties. Future work includes formalizing
the notion of learning block-diagonal matrices, scaling up the optimization algorithm, and studying other
regularizers that promote similarity matrices with desirable properties.
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Figure 1: Raw (left) and learned (right) affinity matrix for the Iris dataset

Figure 2: Raw (left) and learned (right) affinity matrix for the digits 3 and 5.
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Figure 3: Raw (left) and learned (right) affinity matrix for the digits 4 and 9.
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Figure 4: Color represents the probability of succesful recovery over 10 trials. x-axis represents the number
of observed entries and y-axis represents the rank. Y is 50× 50 symmetric, positive-definite.
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Figure 5: k-plane segmentation problem.

Figure 6: Ideal Z from solving trace/max-norm problem for k-planes.
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