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Examples of Graphical Models

I Pairwise MRF.

p(y) =
1

Z(Θ)
exp

 ∑
(r,j)∈E(G)

φrj(yr, yj)


I Multivariate gaussian distribution (Gaussian MRF)

p(x) =
1

Z(Θ)
exp

(
−1

2

p∑
s=1

p∑
t=1

βstxsxt +

p∑
s=1

αsxs

)



Mixed Graphical Model

I Want a simple joint distribution on p continuous variables
and q discrete (categorical) variables.

I Joint distribution of p gaussian variables is multivariate
gaussian.

I Joint distribution of q discrete variables is pairwise mrf.

I Conditional distributions can be estimated via
(generalized) linear regression.

I What about the potential term between a continuous
variable xs and discrete variable yj?



Mixed Model - Joint Distribution

p(x, y; Θ) =
1

Z(Θ)
exp

(
p∑
s=1

p∑
t=1

−1

2
βstxsxt +

p∑
s=1

αsxs

+

p∑
s=1

q∑
j=1

ρsj(yj)xs +

q∑
j=1

q∑
r=1

φrj(yr, yj)





Properties of the Mixed Model

I Pairwise model with 3 type of potentials: discrete-discrete,
continuous-discrete, and continuous-continuous. Thus has
O((p+ q)2) parameters.

I p(x|y) is a gaussian with Σ = B−1 and

µ = B−1
(∑

j ρsj(yj)
)

.

I Conditional distribution of x have the same covariance
regardless of the values taken by the discrete variables y.
Mean depends additively on the values of discrete variables
y.

I Special case of Lauritzen’s mixed graphical model.



Related Work

I Lauritzen proposed the conditional Gaussian model

I Fellinghauer et al. (2011) use random forests to fit the
conditional distributions. This is tailored for mixed models.

I Cheng, Levina, and Zhu (2013) generalize to include higher
order edges.

I Yang et al. (2014) and Shizhe Chen, Witten, and Shojaie
(2014) generalize beyond Gaussian and categorical.
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Pseudolikelihood

I Log-likelihood: `(Θ) = log p(xi; Θ). Derivative is
T̂ (x, y)− Ep(Θ)[T (x, y)] where T are sufficient statistics.
This is hard to compute.

I Log-pseudolikelihood: `PL(Θ) =
∑

s log p(xis|xi\s; Θ)

I Pseudolikelihood is an asymptotically consistent
approximation to the likelihood by using product of the
conditional distributions.

I Partition function cancels out in the conditional
distribution, so gradients of the log-pseudolikelihood are
cheap to compute.



Conditional Distribution of a Discrete Variable

For a discrete variable yr with Lr states, its conditional
distribution is a multinomial distribution, as used in
(multiclass) logistic regression. Whenever a discrete variable is
a predictor, each level contributes an additive effect; continuous
variables contribute linear effects.

p(yr|y\r,, x; Θ) =
exp

(∑
s ρsr(yr)xs + φrr(yr, yr) +

∑
j 6=r φrj(yr, yj)

)
∑Lr

l=1 exp
(∑

s ρsr(l)xs + φrr(l, l) +
∑

j 6=r φrj(l, yj)
)

This is just multinomial logistic regression.

p(yr = k) =
exp

(
αTk z

)∑Lr
l=1 exp

(
αTl z

)



Continuous variable xs given all other variables is a gaussian
distribution with a linear regression model for the mean.

p(xs|x\s, y; Θ) =

√
βss√
2π

exp

(
−βss

2

(
αs +

∑
j ρsj(yj)−

∑
t6=s βstxt

βss
− xs

)2
)

This can be expressed as linear regression

E(xs|z1, . . . , zp) = αT z = α0 +
∑
j

zjαj (1)

p(xs|z1, . . . , zp) =
1√
2πσ

exp

(
− 1

2σ2
(xs − αT z)2

)
with σ = 1/βss

(2)



Two more parameter estimation methods

Neighborhood selection/Separate regressions.

I Each node maximizes its own conditional likelihood
p(xs|x\s). Intuitively, this should behave similar to the
pseudolikelihood since the pseudolikelihood jointly
minimizes

∑
s− log p(xs|x\s).

I This has twice the number of parameters as the
pseudolikelihood/likelihood because the regressions do not
enforce symmetry.

I Easily distributed.

Maximum Likelihood

I Believed to be more statistically efficient

I Computationally intractable.
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Sparsity and Conditional Independence

I Lack of an edge (u, v) means Xu ⊥ Xv|X\u,v (Xu and Xv

are conditionally independent.)

I Means that parameter block βst,ρsj , or φrj are 0.

I Each parameter block is a different size. The
continuous-continuous edge are scalars, the
continuous-discrete edge are vectors and the
discrete-discrete edge is a table.
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Parameters of the mixed model

Figure: βst shown in red, ρsj shown in blue, and φrj shown in
orange. The rectangles correspond to a group of parameters.



Regularizer

minΘ `PL(Θ)+λ

∑
s,t

wst ‖βst‖+
∑
s,j

wsj ‖ρsj‖+
∑
r,j

wrj ‖φrj‖


I Each edge group is of a different size and different

distribution, so we need a different penalty for each group.

I By KKT conditions, a group is non-zero iff
∥∥∥ ∂`
∂θg

∥∥∥ > λwg.

Thus we choose weights

wg ∝ E0

∥∥∥∥ ∂`∂θg
∥∥∥∥ .



Optimization Algorithm: Proximal Newton
method

I g(x) + h(x) :=

minΘ `PL(Θ) + λ
(∑

s,t ‖βst‖+
∑

s,j ‖ρsj‖+
∑

r,j ‖φrj‖
)

I First-order methods: proximal gradient and accelerated
proximal gradient, which have similar convergence
properties as their smooth counter parts (sublinear
convergence rate, and linear convergence rate under strong
convexity).

I Second-order methods: model smooth part g(x) with
quadratic model. Proximal gradient is a linear model of the
smooth function g(x).



Proximal Newton-like Algorithms

I Build a quadratic model about the iterate xk and solve this
as a subproblem.

x+ = argminu g(x)+∇g(x)T (u−x)+
1

2t
(u−x)TH(u−x)+h(u)

Algorithm 1 A generic proximal Newton-type method

Require: starting point x0 ∈ dom f
1: repeat
2: Choose an approximation to the Hessian Hk.
3: Solve the subproblem for a search direction:

∆xk ← arg mind∇g(xk)
Td+ 1

2d
THkd+ h(xk + d).

4: Select tk with a backtracking line search.
5: Update: xk+1 ← xk + tk∆xk.
6: until stopping conditions are satisfied.



Why are these proximal?

Definition (Scaled proximal mappings)

Let h be a convex function and H, a positive definite matrix.
Then the scaled proximal mapping of h at x is defined to be

proxHh (x) = arg min
y

h(y) +
1

2
‖y − x‖2H .

The proximal Newton update is

xk+1 = proxHk
h

(
xk −H−1

k ∇g(xk)
)

and analogous to the proximal gradient update

xk+1 = proxh/L

(
xk −

1

L
∇g(xk)

)



A classical idea

Traces back to:

I Projected Newton-type methods

I Cost-approximation methods

Popular methods tailored to specific problems:

I glmnet: lasso and elastic-net regularized generalized linear
models

I LIBLINEAR: `1-regularized logistic regression

I QUIC: sparse inverse covariance estimation



I Theoretical analysis shows that this converges
quadratically with exact Hessian and super-linearly with
BFGS (Lee, Sun, and Saunders 2012).

I Empirical results on structure learning problem confirms
this. Requires very few derivatives of the log-partition.

I If we solve subproblems with first order methods, only
require proximal operator of nonsmooth h(u). Method is
very general.

I Method allows you to choose how to solve the subproblem,
and comes with a stopping criterion that preserves the
convergence rate.

I PNOPT package:
www.stanford.edu/group/SOL/software/pnopt

www.stanford.edu/group/SOL/software/pnopt


Statistical Consistency

Special case of a more general model selection consistency
theorem.

Theorem (Lee, Sun, and Taylor 2013)

1.
∥∥∥Θ̂−Θ?

∥∥∥
F
≤ C

√
|A| log |G|

n

2. Θ̂g = 0 for g ∈ I.

|A| is the number of active edges, and I is the inactive edges.
Main assumption is a generalized irrepresentable condition.
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Synthetic Experiment
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Figure: Blue nodes are continuous variables, red nodes are binary
variables and the orange, green and dark blue lines represent the 3
types of edges. Plot of the probability of correct edge recovery at a
given sample size (p+ q = 20). Results are averaged over 100 trials.



Survey Experiments

I The survey dataset we consider consists of 11 variables, of
which 2 are continuous and 9 are discrete: age
(continuous), log-wage (continuous), year(7 states), sex(2
states),marital status (5 states), race(4 states), education
level (5 states), geographic region(9 states), job class (2
states), health (2 states), and health insurance (2 states).

I All the evaluations are done using a holdout test set of size
100, 000 for the survey experiments.

I The regularization parameter λ is varied over the interval
[5× 10−5, .7] at 50 points equispaced on log-scale for all
experiments.



Comparing Against Separate Regressions
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Figure: Separate Regression vs Pseudolikelihood n = 100.



Comparing Against Separate Regressions
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Separate Joint
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Figure: Separate Regression vs Pseudolikelihood n = 10000.



What do we lose from using the
Pseuodolikelihood?

I We originally motivated the pseudolikelihood as a
computational surrogate to the likelihood.

I Pseudolikelihood is consistent.

I For small models, we can compute maximum likelihood
estimates and compare it against the pseudolikelihood.



MLE vs. MPLE on Conditional Model
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ML training PL training

Figure: Maximum Likelihood vs Pseudolikelihood. y-axis for top row
is the negative log pseudolikelihood. y-axis for bottom row is the
negative log likelihood. Pseudolikelihood outperforms maximum
likelihood across all the experiments.



MLE vs. MPLE

I We expect PL to do better when evaluated on test negative
log PL and ML to do better when evaluated on test
negative log likelihood.

I Asymptotic theory also suggests that ML is better.

I Theory does not apply to misspecified models and finite
sample regime.



Conclusion

I Defined a new pairwise graphical model over gaussian and
discrete variables.

I Used the pseudolikelihood for tractable inference

I Group sparsity to enforce an edge-sparse graphical model.

I Fast learning method using proximal Newton. Theoretical
analysis of proximal Newton algorithm.

I Theoretical analysis in high-dimensional regime for general
exponential families.



Thanks for listening!



Solving the subproblem

∆xk = arg min
d

∇g(xk)
Td+

1

2
dTHkd+ h(xk + d)

= arg min
d

ĝk(xk + d) + h(xk + d)

Usually, we must use an iterative method to solve this
subproblem.

I Use proximal gradient or coordinate descent on the
subproblem.

I A gradient/coordinate descent iteration on the subproblem
is much cheaper than a gradient iteration on the original
function f , since it does not require a pass over the data.
By solving the subproblem, we are more efficiently using a
gradient evaluation than gradient descent.

I Hk is commonly a L-BFGS approximation, so computing a
gradient takes O(Lp). A gradient of the original function
takes O(np). The subproblem is independent of n.



Inexact Newton-type methods

Main idea: no need to solve the subproblem exactly only need
a good enough search direction.

I We solve the subproblem approximately with an iterative
method, terminating (sometimes very) early

I number of iterations may increase, but computational
expense per iteration is smaller

I many practical implementations use inexact search
directions



What makes a stopping condition good?

We should solve the subproblem more precisely when:

1. xk is close to x?, since Newton’s method converges
quadratically in this regime.

2. ĝk + h is a good approximation to f in the vicinity of xk
(meaning Hk has captured the curvature in g), since
minimizing the subproblem also minimizes f .



Early stopping conditions
For regular Newton’s method the most common stopping
condition is

‖∇ĝk(xk + ∆xk)‖ ≤ ηk ‖∇g(xk)‖ .

Analogously,∥∥G(ĝk+h)/M (xk + ∆xk)
∥∥︸ ︷︷ ︸

optimality of subproblem solution

≤ ηk
∥∥Gf/M (xk)

∥∥︸ ︷︷ ︸
optimality of xk

Choose ηk based on how well Gĝk+h approximates Gf :

ηk ∼
∥∥G(ĝk−1+h)/M (xk)−Gf/M (xk)

∥∥∥∥Gf/M (xk−1)
∥∥

Reflects the Intuition: solve the subproblem more precisely
when

I Gf/M is small, so xk is close to optimum.
I Gĝ+h −Gf ≈ 0, means that Hk is accurately capturing the

curvature of g.



Convergence of the inexact prox-Newton method

I Inexact proximal Newton method converges superlinearly
for the previous choice of stopping criterion and ηk.

I In practice, the stopping criterion works extremely well. It
uses approximately the same number of iterations as
solving the subproblem exactly, but spends much less time
on each subproblem.



Sparse inverse covariance (Graphical Lasso)

Sparse inverse covariance:

min
Θ
−logdet(Θ) + tr(SΘ) + λ‖Θ‖1

I S is a sample covariance, and estimates Σ the population
covariance.

S =

p∑
i=1

(xi − µ)(xi − µ)T

I S is not of full rank since n < p, so S−1 doesn’t exist.

I Graphical lasso is a good estimator of Σ−1



Sparse inverse covariance estimation

Figure: Proximal BFGS method with three subproblem stopping
conditions (Estrogen dataset p = 682)
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Sparse inverse covariance estimation

Figure: Leukemia dataset p = 1255
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Another example

Sparse logistic regression

I training data: x(1), . . . , x(n) with labels
y(1), . . . , y(n) ∈ {0, 1}

I We fit a sparse logistic model to this data:

minimize
w

1

n

n∑
i=1

− log(1 + exp(−yiwTxi)) + λ ‖w‖1



Sparse logistic regression

Figure: Proximal L-BFGS method vs. FISTA and SpaRSA (gisette
dataset, n = 5000, p = 6000 and dense)

0 1000 2000 3000 4000 5000
10

−6

10
−4

10
−2

10
0

Function evaluations

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

Time (sec)

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN



Sparse logistic regression

Figure: rcv1 dataset, n = 47, 000, p = 542, 000 and 40 million
nonzeros
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Markov random field structure learning

minimize
θ

−
∑

(r,j)∈E

θrj(xr, xj) + logZ(θ)

+
∑

(r,j)∈E

(
λ1‖θrj‖2 + λF ‖θrj‖2F

)
.

Figure: Markov random field structure learning
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Summary of Proximal Newton

Proximal Newton-type methods

I converge rapidly near the optimal solution, and can
produce a solution of high accuracy

I are insensitive to the choice of coordinate system and to
the condition number of the level sets of the objective

I are suited to problems where g, ∇g is expensive to evaluate
compared to h, proxh. This is the case when g(x) is a loss
function and computing the gradient requires a pass over
the data.

I “more efficiently uses” a gradient evaluation of g(x).
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