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What I will cover.

Optimization in Deep Learning.

I will focus on gradient-based algorithms for minimizing the train
loss.
Categorize into three classes:

Proofs only use gradient non-vanishing.

Proofs use higher-order derivatives, though the algorithms do
not.

Proofs explicitly analyze sequential order of learning.



Examples from Machine Learning.

Category 1:

All of convex optimization.
Single index/neuron models E(y − σ(wTx))2 +
well-specified1 .
One-point convexity.
Star convexity.
”Local convergence”

Category 2:

Matrix factorization/completion2.
Tensor decomposition3.
Phase retrieval4.
Avoiding saddle-points.
ReLU network with designed loss5.

1Kalai and Sastry, Kakade, Kalai, Kanade and Shamir, Soltanolkotabi,
Mei,Bai, Montanari

2Ge, Lee, and Ma
3Ge, Huang, Jin, and Yuan
4Sun, Qu, and Wright
5Ge, Lee, and Ma



Examples (continued)

Category 3 (generally require more specific assumptions on y|x):

Label noise SGD6

Hierarchical structures: 3- layer networks, adversarial training,
backward feature correction, resnets7

Learning orthogonal ReLU network 8

Large learning rate9

Category 3 proofs generally look like chaining together steps
of category 1 and 2 proofs with careful induction and

argument about learning order (alternate between using
category 1 and 2).

6HaoChen, Wei, Lee, and Ma
7e.g. first learn hidden layer, then approximately learn next layer, then

refine, Allen-Zhu & Li, Chen, Bai, Lee, Zhao et al.
8Li, Ma, and Zhang
9Li, Wei, and Ma.



Today’s Plan

I will cover two general principles: learning as well as first-order
information and learning as well as second-order information
(roughly Category 1 and Category 2).

Category 3 will not be explicitly covered, but given a mastery
of the techniques in Category 1&2 not too hard to piece
together a Category 3 proof.

Category 1 is the most generally applicable and is the
linearization principle.
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Linearization in Deep Learning

Consider fθ(·) is any nonlinear function.

fθ(x) ≈ f0(x)︸ ︷︷ ︸
≈0

+∇θfθ(x)>(θ − θ0) +O(‖θ − θ0‖2),

Assumptions:

Second order term is “negligible”.

f0 is negligible, which can be argued using
initialization+overparametrization.

Interpretation due to:

Kernel Viewpoint: Jacot et al., (Du et al.)2, (Arora et al.) 2,
and Chizat & Bach.

Pseudo-network: Li and Liang, Allen-Zhu et al., Zou et al.



Linearization in Deep Learning

Consider fθ(·) is any nonlinear function.

fθ(x) ≈ f0(x)︸ ︷︷ ︸
≈0

+∇θfθ(x)>(θ − θ0) +O(‖θ − θ0‖2),

Assumptions:

Second order term is “negligible”.

f0 is negligible, which can be argued using
initialization+overparametrization.

Interpretation due to:

Kernel Viewpoint: Jacot et al., (Du et al.)2, (Arora et al.) 2,
and Chizat & Bach.

Pseudo-network: Li and Liang, Allen-Zhu et al., Zou et al.



Tangent Kernel

Under these assumptions,

fθ(x) ≈ f̂θ(x) = (θ − θ0)>∇θf(θ0)

This is a linear classifier in θ.

Feature representation is φ(x; θ0) = ∇θf(θ0).

Corresponds to using the kernel

K = ∇f(θ0)
>∇f(θ0).
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Interlude: What is this kernel?

Neural Tangent Kernel (NTK)

K =

L+1∑
l=1

αlKl and Kl = ∇Wl
f(θ0)

>∇Wl
f(θ0)

Two-layer

K1 =
∑
j

a2jσ
′(w>j x)σ′(w>j x

′)x>x′ and K2 =
∑
j

σ(w>j x)σ(w>j x
′)



Interlude: Kernel is initialization dependent

K1 =
∑
j

a2jσ
′(w>j x)σ′(w>j x

′)x>x′ and K2 =
∑
j

σ(w>j x)σ(w>j x
′)

so how a,w is initialized matters a lot.

Imagine ‖wj‖2 = 1/d and |aj |2 = 1/m, then only K = K2

matters (Daniely, Rahimi-Recht).

“NTK parametrization”: fθ(x) = 1√
m

∑
j ajσ(wjx), and

|aj | = O(1), ‖w‖ = O(1), then

K = K1 +K2.

This is what is done in Jacot et al., Du et al, Chizat & Bach

Li and Liang consider when |aj | = O(1) is fixed, and only
train w,

K = K1.



Interlude: Initialization and LR

Through different initialization/ parametrization/layerwise learning
rate, you can get

K =

L+1∑
l=1

αlKl and Kl = ∇Wl
f(θ0)

>∇Wl
f(θ0)

NTK should be thought of as this family of kernels.

Rahimi-Recht, Daniely studied the special case where only K2

matters and the other terms disappear (tangent kernel wrt
only output layer).



Interlude: Infinite-width

For theoretical analysis, it is convenient to look at infinite width to
remove the randomness from initialization.

Infinite-width

Initialize aj ∼ N(0, s2a/m) and wj ∼ N(0, s2wI/m).
Then

K1 = s2aEw[σ′(w>j x)σ′(w>j x
′)x>x′]

K2 = s2wEw[σ(w>j x)σ(w>j x
′)].

These have ugly closed forms in terms of x>x′, ‖x‖, ‖x′‖.



Interlude: Infinite-Width

Deep net Infinite-Width

Let a(l) = Wlσ(a(l−1)) be the pre-activations with σ(a(0)) := x.
When the widths ml →∞, the pre-activations follow a Gaussian
process. These have covariance function given by:

Σ(0) = x>x′

A(l) =

[
Σ(l−1)(x, x) Σ(l−1)(x, x′)

Σ(l−1)(x′, x) Σ(l−1)(x′, x′)

]
Σ(l)(x, x′) = E(u,v)∼A(l) [σ(u)σ(v)].

limml→∞KL+1 = Σ(L) gives us the kernel of the last layer (Lee et
al., Matthews et al.).
Define the gradient kernels as Σ̇(l)(x, x′) = E(u,v)∼A(l) [σ′(u)σ′(v)].
Jacot et al. , Lee et al., Du et al., Yang, Arora et al. show

Kl(x, x
′) = Σ(l−1)(x, x′) ·ΠL

l′=lΣ̇
(l′)(x, x′)



Interlude: Statistical Behavior of the Kernel

TLDR

NTK is roughly the same as Laplace kernel (also similar to
Gaussain RBF /polynomial kernel) for sample complexity.

More precise statements in second half of the talk.

Let’s turn to Optimization, where the linearization
principle shines.



Linearization as a tool for analyzing Optimization

Let’s consider the simplest non-convex setting of

f(θ, x) =

m∑
j=1

ajσ(w>j x) and `(y, ŷ) = (y − ŷ)2 and only train wj ’s

Optimization with Linearized Model

Imagine that f(θ, x) = f̂θ(x) := (θ − θ0)>∇f(θ0;x).

Loss is convex in θ.

Satisfies the PL condition iff σmin(J(θ)) > 0 and this ensures
linear convergence.

Proof sketch follows Soltanolkotabi, Javanmard, and Lee,
which first used the linearization (?).



Proof continued

The two remaining steps:

1 Show that f̂θ(x) ≈ fθ(x) for all θ encountered by GD.

2 Show that σmin(J(θ)) > 0 for all θ encountered by GD.

This can be done via proving the following two intermediate
results:

1 Showing J(θ) is sufficiently Lipschitz, or equivalently ∇2fθ(x)
is small.

2 σmin(J(θ)) via random matrix theory.



Lipschitz Jacobian Lemma

Lemma (Lemma 7.11 of SJL17)

‖J(W̄ )− J(W )‖2 ≤ |σ′|∞ · ‖x⊗ x‖2 · ‖a‖∞ · ‖W − W̄‖2

This is a deterministic lemma – no data assumptions used yet.



Minimum Singular Value Lemma

Lemma (Proposition 7.4 of SJL17)

Assume xi are iid Gaussian, and m ≥ d. Then

σmin(J(W0)) & d · σmin(W0)‖a‖∞.



Putting it together.

Theorem (Theorem 2.5 of SJL17 with rescaling)

For Gaussian data, md & n and m ≥ d and any full rank
initialization W0, gradient descent decreases the loss to zero (and
thus finds a global min)

We do not explicitly construct a global min nearby, but we
show the loss goes to 0 and Wt stays near W0. Together,
these imply the existence of a global minimum near W0.

The analysis on the required width is sharp up to polylog.
m = n/d is necessary.

Zhong and Montanari 2020 prove the same theorem when
m ≤ d, md & n, for random initialization.



Comparison

Compared to the more recent NTK papers, the width is
independent of n. This step requires more heavyweight RMT.

Remark: For any data/width with σmin(J(W0)) > 0, the
theorem holds; Gaussian data is not important except that we
could give a good quantitative bound on σmin. Thus reduces
to proving a RMT statement at initialization.

We did not establish that the behavior is approximating the
infinite-width kernel. In fact at m = n/d, the finite-width
kernel is not necessarily close to the infinite-width.
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One of the Most “Natural” Questions in DL Theory

Two-layer Teacher Network.

f∗(x) =

r∑
j=1

a∗jσ(w∗>j x).

Problem

Given data from a two-layer teacher, learn to accuracy

E(f∗(x)− f(x))2 < ε.



What is a good result?

Potential results by strength

Information-theoretic sample complexity is n � dr, which is
attainable in well-specified case.

Very good result if computationally efficient: n � poly(d, r).

If σ is monomial/polynomial, polynomial kernel will attain
n � ddeg(σ)r2.



Lower bounds

We shouldn’t stop trying because of lower bounds, but we should
know what they say.

Lower bounds for discrete distribution (Adam Klivans).

These results rule out any algorithm that does not utilize
distribution assumptions/assumptions on W ∗ that learn in
poly(d, r) (probably even do(r) is hard).

Learning intersection of halfspaces (Klivans & Sherstov, Livni
et al.)

Decision trees

Juntas



Lower bounds II and “breaking” lower bounds

Distribution-specific lower bounds

Even if p(x) is isotropic Gaussian, there are some recent negative
results (SQ lower bounds):

For ReLU teacher network, need dr queries (Diakonikolas et
al., similar result by Goel et al.)

We should not be discouraged by lower bounds as long as we have
algorithmic ideas:

Algorithms (well-specified case, parameter recovery)

Spectral Methods (Janzamin et al., Zhong et al.): Learn
teacher networks if r ≤ d and σmin(W ∗) > 0.

Tensor method in disguise (GLM, Li et al.): SGD can estimate
parameters but under even stronger assumptions.
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Functional Analysis Viewpoint

Function spaces

For f∗(x) =
∑m

j=1 ajσ(w>j x), write it as

f(x) =

∫
ρ(w)σ(w>x)dw = ρ>φ(x),

where φ(x)[w] = σ(w>x) with index set w ∈ Sd−1.
Two “natural” function spaces:

F2(B) = {f : f(x) = ρ>φ(x), ‖ρ‖22 ≤ B2} is an `2 space
(RKHS, Rahimi-Recht,Cho and Saul)

F1(B) = {f : f(x) = ρ>φ(x), ‖ρ‖1 ≤ B} is an `1
sparsity-type space known as convex neural net (Banach,
Bengio et al., Bach, ...)



Summary of what is known for two spaces.

F1

The global minimum of `2-norm on all parameters is F1.

Mean field aims to learn all of F1, so does implicit
regularization (Chizat-Bach, Nacson et al., Lyu et al., Wei et
al.)

F1 adapts to low-dimensional structure.
1 n � d‖f∗‖2F1

/ε2

2 If f∗(x) = p(Ux), for U = r × d and p(·) is degree q
polynomial, then nF1

(p(Ux)) = dr2q.
3 Learn width r teacher networks in complexity
nF1(teacher net) = d · poly(r).

F1 almost certainly cannot be efficiently learned, since it
includes two-layer teacher networks of width r. All the
previously mentioned lower bounds apply to F1.

Opinion: Unlikely that mean field or any SGD approach will
yield polynomial-time learning of F1.



Summary of what is known for two spaces.

F2

Computationally efficient via SGD.

Does not adapt to low-dimensional structure. If
f∗(x) = p(Ux), then nF2 � dq even if U = 1× d.

Teacher network has & ed (probably infinite) F2 norm
(Yehudai and Shamir) and sample complexity nF2 & dpoly(1/ε).

Essentially the same as NTK as far as theoretical results
bounds go.



Finding the sweet spot.

Goal.

The goal is to find an in-between space that

Adapts to low-dimensional structure

Computationally tractable via SGD.

Obvious guess is `p for 1 < p < 2, but I don’t think this leads to
tractable algorithms.
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Motivation

Monomial Activation

For quadratic activation (and monomial activation),∫
ρ(w)(w>x)2 = 〈

∫
ρ(w)ww>, xx>〉.

F2 is a frobenius norm inductive bias.

F1 is a nuclear norm inductive bias.

This suggests rank as a measure of “low-dimensional” latent
structure.

For monomial activation, this corresponds to the width of the
teacher network.
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Low-rank Polynomials

Definition

(Low rank polynomial) f∗ is a rank r polynomial of degree p if

f∗(x) =

r∑
s=1

a∗s(w
∗>
s x)ps ,

where |a∗s| ≤ 1, E[(w∗>s x)2ps ] ≤ 1, and ps ≤ p.

Teacher networks with polynomial activation of bounded
degree and analytic activation (approximately).

Constant depth teacher networks with polynomial activation.

Real reason: I will show you a non-trivial learning guarantee
with SGD.
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Baseline approaches

Using F2 to learn this class needs & dp samples.

Using F1 to learn needs at most d · poly(r) samples (nearly
information-theoretic optimal).

SGD+Signed Dropout needs dp−1 · poly(r, p) samples (via the
Quadratic NTK proof technique in Bai and Lee).

Still a very large gap between d · poly(r) and dp−1 · poly(r, p).
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Main Theorem

Theorem

SGD+Signed Dropout on a three-layer neural net architecture
(polynomial width) learns with n � dp/2 · poly(r,p)

ε4
in time

n · poly(d, r, p, 1ε ).

Assumption:

Moment assumptions on x. Any multivariate Gaussian or
elliptical distribution on sphere is fine.



How to attain this.

Architecture

3-layer network:

f(x) =

m∑
j=1

arσ(w>r g(x))

g(x)l = σ(v>l x+ b).

We will only train wr. The ar, vl are randomly initialized and
fixed.

It is crucial to have a 3-layer architecture, our results are not
attainable with only a two-layer network (lower bound).



Alg: SGD with data-dependent regularizer

Step 1: Estimate covariance Σ̂ = 1
n

∑n
i=1 g(xi)g(xi)

>

Step 2: Run SGD +Signed Dropout (AzLL, Bai and Lee) on

L(w1, . . . , wm) =
1

n

n∑
i=1

`(fW (xi), yi) + λ‖W Σ̂1/2‖42,4

Signed Dropout: Modify the gradient per neuron zr∇wrL(W )
for zr Rademacher.

Prevents the linearized model from memorizing (NTK).

Allows for learning rate O(m0.25) larger than NTK.



Why it works.

Proof sketch (assuming I know the input is Gaussian and
f(x) = (β>x)p):

1 Let g(x)l be Hermite polynomial basis of degree p
2 for

1 ≤ l ≤ D := dp/2.

2 Via the hermite, we can express (β>x)p/2 = θ>g(x).

3 The second layer input is the hermite polynomials. It needs to
learn f(x) = (θ>g(x))2.

4 QNTK is very good at learning quadratic functions of the
input

(θ>g(x))2 =

m∑
j=1

σ′′(w>0,jg(x))(θ>g(x))2.



Potential Improvements

Probably within reach.

Train the first layer vr’s and show this can improve ε dependence.
Hope:

n � dp/2 · poly(r, p)

ε4
→ n � dp/2 · poly(r, p)

ε2
.

Currently, 1
ε2

is due to the first layer only ε approximating the
basis of degree p/2 polynomials.

We hope that by training the first hidden layer that the
approximation error improves from ε→ 0.



Bigger Questions

Is poly(d) possible?

A: There are reasons to believe that dp/2 is a fundamental
limit by analogy to tensor completion/sensing. SOS can get
at best dp/2 and conditional on hypergraphic planted clique
(Luo and Zhang).
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Bigger Questions

What is a learnable function class for deeper teacher networks?
I was thinking

f∗(x) =

r∑
s=1

αs(β
>
s g
∗
s(x))ps ,

where |αs| ≤ 1, E[(β>s x)2ps ] ≤ 1, ps ≤ p, and g∗s is
coordinatewise low rank polynomial.

Easier to learn algorithmically (but I still don’t know how to
prove):

f∗(x) =
∑
s

v>s g
∗
s(x) +

r∑
s=1

αs(β
>
s g
∗
s(x))ps



Open Directions

Systematic understanding of SGD

Category 2 & 3 are focused on going beyond
linearization/kernel methods, but they are fairly limited in the
assumptions on y|x they can exploit. Can we more
systematically understand how architecture/sgd exploits y|x?

Category 3 is especially ad-hoc and fragile.

Most analysis do not use much about p(x) (low-dimensional
manifold etc.).

Interaction of architecture design, algorithm, and regularizer.

Understanding SGD’s ability to learn good representations,
not only classifiers.



Thank you for listening.
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