
Exact Statistical Inference after Model
Selection.

Jason D Lee

Dept of Statistics and Institute of Computational and
Mathematical Engineering, Stanford University

Joint work with Jonathan Taylor, Dennis Sun, and Yuekai Sun.
February 2014

Jason D Lee Exact Statistical Inference after Model Selection.



Motivation: Linear regression in high dimensions

1 Select relevant variables Ŝ via a variable selection procedure
(k most correlated, lasso, OMP ...).

2 Fit a linear regression model using only the variables in Ŝ.

3 Return the selected set of coefficients Ŝ and the coefficients
β̂Ŝ .

4 Construct confidence intervals 95% confidence intervals
(β̂j − 1.96σj , β̂j + 1.96σj).

5 Test the hypothesis H0 : βj = 0 by rejecting when∣∣∣βjσj ∣∣∣ ≥ 1.96.

Are these confidence intervals and hypothesis tests
correct?
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Check by Simulation

Generate design matrix X ∈ Rn×p from a standard normal
with n = 20 and p = 200.

Let y = Xβ0 + ε.

ε ∼ N(0, 1).

β0 is 2 sparse with β0
1 , β

0
2 = SNR.

Use marginal screening to select k = 2 variables, and then fit
linear regression over the selected variables.

Construct 90% confidence intervals for β and check the
coverage proportion.

Jason D Lee Exact Statistical Inference after Model Selection.



Simulation
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Adjusted
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Figure: Plot of the coverage proportion across a range of SNR.
The coverage proportion of the z intervals is far below the
nominal level of 1− α = .9, even at SNR =5. The adjusted
intervals (our method) always have coverage proportion .9.
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Setup

Model

Assume that yi = µ(xi) + εi

εi ∼ N (0, σ2).

xi ∈ Rp, y ∈ Rn, and µ =

µ(x1)
...

µ(xn)

.

Design matrix X =

x
T
1
...
xTn

 ∈ Rn×p.
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Review of Linear Regression

The best linear predictor (f(x) = βTx) is β? = X†µ. Linear
regression estimates this using

β̂ = X†y.

Theorem

The least squares estimator is distributed

β̂ ∼ N (X†µ, σ2(XTX)−1)

and

Pr
(
β?j ∈

(
β̂j − zσ(XTX)

−1/2
jj , β̂j + zσ(XTX)

−1/2
jj

))
= 1− α.
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Explaining the simulation

1 The confidence intervals rely on the result that β̂ is Gaussian.

2 The variable selection procedure (marginal screening) chose
variables in a way that depend on y. In particular,

|XT
Ŝ
y| > |XT

−Ŝy|.

3 For any fixed set S, XT
S y is Gaussian, but XT

Ŝ
y is not

Gaussian!

Example

Let y ∼ N (0, I), and X = I. Let i? = arg max yi, then yi? is not
Gaussian.
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Condition on selection framework

This talk is about a framework for post-selection inference, i.e. the
selection procedure is adaptive to the data. The main idea is

condition on selection

1 Represent the selection event as a set of affine constraints on
y.

2 Derive the conditional distribution and pivotal quantity for
linear contrasts ηT y.

3 Invert the pivotal quantity to obtain confidence intervals for
ηTµ.
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Related Work

POSI (Berk et al. 2013) widen intervals to simultaneously
cover all coefficients of all possible submodels. The method is
extremely conservative and is only computationally feasible for
p ≤ 30.

Asymptotic normality by “inverting” KKT conditions (Zhang
2012, Buhlmann 2012, Van de Geer 2013, Javanmard 2013).
Asymptotic result that requires consistency of the lasso.

Significance testing for Lasso (Lockhart et al. 2013) tests for
whether all signal variables are found. Our framework allows
us to test the same thing with no assumptions on X and is
completely non-asymptotic and exact.
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Preview of our results

The results are exact (non-asymptotic). Only assume X is in
general position, and no assumptions on n and p (e.g.
n > s log p).

We assume that ε is Gaussian and σ2 is known.

The constructed confidence intervals satisfy

Pr
(
β?
j∈Ŝ ∈ [Ljα, U

j
α]
)

= 1− α,

where β?
j∈Ŝ = X†

Ŝ
µ.

Test for whether the lasso/marginal screening have found all
relevant variables.

Framework is applicable to many model selection procedures
including marginal screening, lasso, OMP, and non-negative
least squares.
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Marginal screening

Algorithm 1 Marginal screening algorithm

1: Input: Design matrix X, response y, and model size k.
2: Compute |XT y|.
3: Let Ŝ be the index of the k largest entries of |XT y|.
4: Compute β̂Ŝ = (XT

Ŝ
XŜ)−1XT

Ŝ
y
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Marginal screening selection event

The marginal screening selection event is a subset of Rn:{
y : ŝix

T
i y > ±xTj y, for each i ∈ Ŝ and j ∈ Ŝc

}
=
{
y : A(Ŝ, ŝ)y ≤ b(Ŝ, ŝ)

}
The marginal screening selection event corresponds to selecting a
set of variables Ŝ, and those variables having signs

ŝ = sign
(
XT
Ŝ
y
)

.
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Lasso selection event

Lasso

β̂ = arg min
β

1

2
‖y −Xβ‖2 + λ ‖β‖1

KKT conditions provide us with the selection event. A set of
variables Ŝ is selected with sign(β̂Ŝ) = ŝ if

{
y : sign(U(Ŝ, ŝ)) = zE ,

∥∥∥W (Ŝ, ŝ)
∥∥∥
∞
< 1
}

= {y : A(Ŝ, ŝ)y ≤ b(Ŝ, ŝ)}

where

U(S, s) := (XT
SXS)−1(XT

S y − λzS)

W (S, s) := XT
−S(XT

S )†zS +
1

λ
XT
−S(I − PS)y.
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Partition via the selection event

Partition decomposition

We can decompose y in terms of partition, where y is a different
constrained Gaussian for each element of the partition.

y =
∑
S,s

y 1 (A(S, s)y ≤ b(S, s))

Theorem

The distribution of y conditional on the selection event is a
constrained Gaussian,

y|{(Ŝ, ŝ) = (S, s)} d
= Gaussian constrained to {x : A(Ŝ, ŝ)x ≤ b}.
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Constrained Gaussian

The distribution of y ∼ N (µ, σ2I) conditional on
{y : Ay ≤ b} has density 1

Pr(Ay≤b)φ(y;µ,Σ)1 (Ay ≤ b).

Although we understand the distribution of y condition on
selection is a constrained Gaussian, the normalization
constant is computationally intractable.

We would like to understand the distribution of ηT y, since
regression coefficients are linear contrasts, β̂j∈Ŝ = eTj X

†
Ŝ
y.

Instead, we show ηT y is a (univariate) truncated normal.
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Lemma

The conditioning set can be rewritten in terms of ηT y as follows:

{Ay ≤ b} = {V−(y) ≤ ηT y ≤ V+(y),V0(y) ≥ 0}

where α = AΣη
ηT Ση

, V0 = V0(y) = minj: αj=0 bj − (Ay)j ,

V− = V−(y) = max
j: αj<0

bj − (Ay)j + αjη
T y

αj

V+ = V+(y) = min
j: αj>0

bj − (Ay)j + αjη
T y

αj
.

Moreover, (V+,V−,V0) are independent of ηT y.
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Geometric Intuition

Figure: A picture demonstrating that the set {Ay ≤ b} can be
characterized by {V− ≤ ηT y ≤ V+}. Assuming Σ = I and ||η||2 = 1,
V− and V+ are functions of Pη⊥y only, which is independent of ηT y.
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Truncated Normal

Corollary

The distribution of ηT y conditioned on
{Ay ≤ b,V+(y) = v+,V−(y) = v−} is a (univariate) Gaussian
truncated to fall between V− and V+, i.e.

ηT y | {Ay ≤ b,V+(y) = v+,V−(y) = v−} ∼ TN(ηTµ, ηTΣη, v−, v+)

TN(µ, σ, a, b) is the normal distribution truncated to lie between a
and b.
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Pivotal quantity

Theorem

Let Φ(x) denote the CDF of a N(0, 1) random variable, and let
F (x;µ, σ2, a, b) denote the CDF of TN(µ, σ, a, b)

F (x;µ, σ2, a, b) =
Φ((x− µ)/σ)− Φ((a− µ)/σ)

Φ((b− µ)/σ)− Φ((a− µ)/σ)
.

Then F (ηT y; ηTµ, ηTΣη,V−(y),V+(y)) is a pivotal quantity

F (ηT y; ηTµ, ηTΣη,V−(y),V+(y)) ∼ Unif(0, 1)
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Hypothesis testing

Testing contrasts ηTµ.

The pivotal quantity allows us to test H0 : ηTµ = γ0. Under H0,

F (ηT y; γ0, η
TΣη,V−(y),V+(y)) ∼ Unif(0, 1)

The test that rejects if F (ηT y; γ0, η
TΣη,V−,V+) > 1− α is an

α-level test of H0.
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Figure: Histogram and empirical distribution of F
[V−,V+]

ηTµ, ηT Ση
(ηT y)

obtained by sampling y ∼ N(µ,Σ) constrained to {Ay ≤ b}. The
distribution is very close to Unif(0, 1).
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Testing regression coefficients

Recall, β?
Ŝ

= X†
Ŝ
µ, and β̂Ŝ = X†

Ŝ
y.

By choosing ηj = X†T
Ŝ
ej , we have ηTj y = β̂j∈Ŝ , which is the

regression coefficient with respect to design XŜ .

Theorem

Let H0 : β?
j∈Ŝ = βj . The test that rejects if

F (β̂j∈Ŝ ;βj , η
T
j Σηj ,V−,V+) > 1− α

2 or

F (β̂j∈Ŝ ;βj , η
T
j Σηj ,V−,V+) < α

2 is an α-level test of H0.
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Algorithm 2 Hypothesis test for selected variables

1: Input: Design matrix X, response y, model size k.
2: Use variable selection method (marginal screening or Lasso) to

select a subset of variables Ŝ.
3: Specify the null hypothesis H0 : β?

j∈Ŝ = βj .

4: Let A = A(Ŝ, ŝ) and b = b(Ŝ, ŝ). Let ηj = (XT
Ŝ

)†ej .

5: Compute F (β̂j∈Ŝ ;βj , σ
2||ηj ||2,V−,V+), where V− and V+ are

computed via the A, b, and η previously defined.
6: Output: Reject if F (β̂j∈Ŝ ;βj , σ2||ηj ||2,V−,V+) < α

2 or

F (β̂j∈Ŝ ;βj , σ
2||ηj ||2,V−,V+) > 1− α

2 .
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Confidence Intervals

Confidence interval

Confidence interval C(j, y) is all βj ’s, where a test of
H0 : β?

j∈Ŝ = βj fails to reject at level α.

C(j, y) = {βj :
α

2
≤ F (β̂j∈Ŝ ;βj , σ

2||ηj ||2,V−,V+) ≤ 1− α

2
}

Interval [Lj , U j ] is found by solving
F (β̂j∈Ŝ ;Lj , σ2||ηj ||2,V−,V+) = 1− α

2 . and

F (β̂j∈Ŝ ;U j , σ2||ηj ||2,V−,V+) = α
2 .
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Algorithm 3 Confidence intervals for selected variables

1: Input: Design matrix X, response y, model size k.
2: Use variable selection method to select a subset of variables Ŝ.
3: Let A = A(Ŝ, ŝ) and b = b(Ŝ, ŝ). Let ηj = (XT

Ŝ
)†ej .

4: Solve for Lj and U j where V− and V+ are computed using the
A, b, and ηj previously defined.

5: Output: Return the intervals [Lj , U j ] for j ∈ Ŝ.

Lemma

For each j ∈ Ŝ,

Pr
(
β?
j∈Ŝ ∈ [Lj , U j ]

)
= 1− α.
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Solve Lasso at some λ, and construct confidence intervals using
previous algorithm.
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Figure: 90% confidence intervals for β̂?1 for two different settings
(n, p) = (100, 50) and (n, p) = (100, 200), over 25 simulated data sets.
The truth β0 has five non-zero coefficients, all set to 5.0, and the noise
variance is 0.25. A green bar means the confidence interval covers the
true value while a red bar means otherwise.
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Blue line is our adjusted intervals, gray line is OLS intervals
which ignore selection, and hellow line is the intervals
computed using data splitting.

Variable S3 is no longer significant after adjusting for model
selection.

Our adjusted intervals are approximately the same as the OLS
intervals for significant variables. Data splitting widens the
intervals by

√
2.
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Non-Gaussian noise and estimated σ2
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Figure: Plot of 1− α vs the coverage proportion for diabetes dataset.
Selection is Simulation is done by using 2000 iterations of residual
bootstrap. The adjusted intervals always cover at the nominal level,
whereas the z-test is always below.
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Minimal post-selection inference

Minimal selection event

Recall that each pair (S, s) is in bijection with a selection event.
We only care about the selected variables S, not the signs s.
Selection event for only variables S:{

y : Ŝ(y) = S
}

=
⋃

s∈{−1,1}|Ŝ|
{y : (Ŝ(y), s(y)) = (S, s)}

=
⋃

s∈{−1,1}|Ŝ|
{y : A(S, s)y ≤ b(S, s)}

Condition on the coarsest partition where η is still measurable.
The set is a union of linear constraints. Pivotal quantity,
hypothesis tests, and intervals are valid for union of linear
constraints.
Empirically results in shorter confidence intervals, at the cost
more computation.
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Figure: Comparison of the minimal and simple intervals as applied to the
same simulated data set for two values of λ. The simulated data featured
n = 25, p = 50, and 5 true non-zero coefficients; only the first 20
coefficients are shown. (We have included variables with no intervals to
emphasize that inference is only on the selected variables.) We see that
the simple intervals are as good as the minimal intervals on the left plot;
the advantage of the minimal intervals is realized when the estimate is
unstable and the simple intervals are very long, as in the right plot.
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More model selection procedures

Easily generalizes to other model selection
procedures!

Orthogonal matching pursuit/ forward stepwise regression.

Screen+clean procedures such as marginal screening followed
by Lasso.

Constrained least squares (Non-negative least squares,
isotonic regression).

LARS (Taylor et al. 2014) and elastic net.

Any polyhedral regularizer.
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Extensions

Testing the goodness of fit of the selected model,
H0 : (I − PŜ)µ = 0.

Non-Gaussian noise (Tian and Taylor 2014).

Logistic regression, and conditional maximum likelihood.

Pathwise algorithm for stopping Lasso that controls FWER.

Estimating σ2.

Jason D Lee Exact Statistical Inference after Model Selection.



Acknowledgments

Thanks to Trevor Hastie and other members of the Hastie,
Tibshirani and Taylor group for feedback.

References:

1 Jason D Lee and Jonathan Taylor, Exact statistical inference
after marginal screening.

2 Jason D Lee, Dennis L Sun, Yuekai Sun, and Jonathan Taylor,
Exact post-selection inference with the Lasso.

Papers available at http://stanford.edu/~jdl17/

Thanks for Listening!

Jason D Lee Exact Statistical Inference after Model Selection.

http://stanford.edu/~jdl17/


Testing goodness-of-fit

We would like to test
H0 : β0

−Ŝ = 0.

This means that all the true signal variables have been found,
support(β0) ⊂ Ŝ.

We can test this by checking whether the unselected variables help
explain the residual, or H0 :

∥∥(I − PŜ)µ
∥∥
∞ = 0.
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Testing goodness-of-fit

Letting j? := argmaxj |eTj (I − PŜ)y| and sj := sign(eTj (I − PŜ)y),
we set

ηj? = sj?(I − PŜ)ej? ,

and test H0 : ηTj?µ = 0. This is a linear contrast of y.

Corollary

Let H0 :
∥∥(I − PŜ)µ

∥∥
∞ = 0. Then, the test which rejects when{
F

[V−,V+]
0, σ2||η∗j ||2

(ηTj?y) > 1− α
}

is level α,

P
(
F

[V−,V+]
0, σ2||ηj? ||2

(ηTj?y) > 1− α
∣∣ H0

)
= α.
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Figure: P-values for H0,λ at various λ values for a small
(n = 100, p = 50) and a large (n = 100, p = 200) uncorrelated Gaussian
design, computed over 50 simulated data sets. The true model has three
non-zero coefficients, all set to 1.0, and the noise variance is 2.0. We see
the p-values are Unif(0, 1) when the selected model includes the truly
relevant predictors (black dots) and are stochastically smaller than
Unif(0, 1) when the selected model omits a relevant predictor (red dots).
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Figure: P-values for H0,λ at various λ values for a small
(n = 100, p = 50) and a large (n = 100, p = 200) correlated (ρ = 0.7)
Gaussian design, computed over 50 simulated data sets. The true model
has three non-zero coefficients, all set to 1.0, and the noise variance is
2.0. Since the predictors are correlated, the relevant predictors are not
always selected first. However, the p-values remain uniformly distributed
when H0,λ is true and stochastically smaller than Unif(0, 1) otherwise.
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