Towards a Foundation of Deep Learning: SGD, Overparametrization, and Generalization

Jason D. Lee

University of Southern California

January 29, 2019

Successes of Deep Learning

- Game-playing (AlphaGo, DOTA, King of Glory)
- Computer Vision (Classification, Detection, Reasoning.)
- Automatic Speech Recognition
- Natural Language Processing (Machine Translation, Chatbots)

٩

Successes of Deep Learning

- Game-playing (AlphaGo, DOTA, King of Glory)
- Computer Vision (Classification, Detection, Reasoning.)
- Automatic Speech Recognition
- Natural Language Processing (Machine Translation, Chatbots)
- ٩

Today's Talk

Goal: A few steps towards theoretical understanding of Optimization and Generalization in Deep Learning.

4 Algorithmic/Implicit Regularization

Theoretical Challenges: Two Major Hurdles

- Optimization
 - Non-convex and non-smooth with exponentially many critical points.
- O Statistical
 - Successful Deep Networks are huge with more parameters than samples (overparametrization).

Theoretical Challenges: Two Major Hurdles

- Optimization
 - Non-convex and non-smooth with exponentially many critical points.
- O Statistical
 - Successful Deep Networks are huge with more parameters than samples (overparametrization).

Two Challenges are Intertwined

Learning = Optimization Error + Statistical Error. But Optimization and Statistics Cannot Be Decoupled.

- The choice of optimization algorithm affects the statistical performance (generalization error).
- Improving statistical performance (e.g. using regularizers, dropout ...) changes the algorithm dynamics and landscape.

• Practical observation: Gradient methods find high quality solutions.

- Practical observation: Gradient methods find high quality solutions.
- Theoretical Side: Even finding a local minimum is NP-hard!

- Practical observation: Gradient methods find high quality solutions.
- Theoretical Side: Even finding a local minimum is NP-hard!
- Follow the Gradient Principle: No known convergence results for even back-propagation to stationary points!

- Practical observation: Gradient methods find high quality solutions.
- Theoretical Side: Even finding a local minimum is NP-hard!
- Follow the Gradient Principle: No known convergence results for even back-propagation to stationary points!

Question

Why is (stochastic) gradient descent (GD) successful? Or is it just "alchemy"?

(Sub)-Gradient Descent

Gradient Descent algorithm:

$$x_{k+1} = x_k - \alpha_k \partial f(x_k).$$

Non-smoothness

Deep Learning Loss Functions are not smooth! (e.g. ReLU, max-pooling, batch-norm)

Theorem (Davis, Drusvyatskiy, Kakade, and Lee)

Let x_k be the iterates of the stochastic sub-gradient method. Assume that f is locally Lipschitz, then every limit point x^* is critical:

 $0 \in \partial f(x^*).$

- Previously, convergence of sub-gradient method to stationary points is only known for weakly-convex functions $(f(x) + \frac{\lambda}{2} ||x||^2 \text{ convex })$. $(1 \text{ReLU}(x))^2$ is not weakly convex.
- Convergence rate is polynomial in $\frac{\sqrt{d}}{\epsilon^4}$, to ϵ -subgradient for a smoothing SGD variant.

Automatic Differentiation a.k.a Backpropagation

Automatic Differentiation uses the chain rule with dynamic programming to compute gradients in time 5x of function evaluation.

However, there is no chain rule for subgradients!

$$x = \sigma(x) - \sigma(-x),$$

TensorFlow/Pytorch will give the wrong answer.

Automatic Differentiation a.k.a Backpropagation

Automatic Differentiation uses the chain rule with dynamic programming to compute gradients in time 5x of function evaluation.

However, there is no chain rule for subgradients!

 $x = \sigma(x) - \sigma(-x),$

TensorFlow/Pytorch will give the wrong answer.

Theorem (Kakade and Lee 2018)

There is a chain rule for subgradients. Using this chain rule with randomization, Automatic Differentiation can compute a subgradient in time 6x of function evaluation.

Theorem (Lee et al., COLT 2016)

Let $f : \mathbf{R}^n \to \mathbf{R}$ be a twice continuously differentiable function with the strict saddle property, then gradient descent with a random initialization converges to a local minimizer or negative infinity.

- Theorem applies for many optimization algorithms including coordinate descent, mirror descent, manifold gradient descent, and ADMM (Lee et al. 2017 and Hong et al. 2018)
- Stochastic optimization with injected isotropic noise finds local minimizers in polynomial time (Pemantle 1992; Ge et al. 2015, Jin et al. 2017)

Why are local minimizers interesting?

All local minimizers are global and SGD/GD find the global min:

- Overparametrized Networks with Quadratic Activation (Du-Lee 2018)
- ReLU networks via landscape design (GLM18)
- Matrix Completion (GLM16, GJZ17,...)
- Sank k approximation (Baldi-Hornik 89)
- Matrix Sensing (BNS16)
- Phase Retrieval (SQW16)
- Orthogonal Tensor Decomposition (AGHKT12,GHJY15)
- Oictionary Learning (SQW15)
- Max-cut via Burer Monteiro (BBV16, Montanari 16)

Landscape Design

Designing the Landscape

Goal: Design the Loss Function so that gradient decent finds good solutions (e.g. no spurious local minimizers)^a.

^aJanzamin-Anandkumar, Ge-Lee-Ma , Du-Lee

Figure: Illustration: SGD succeeds on the right loss function, but fails on the left in finding global minima.

Practical Landscape Design - Overparametrization

Figure: Data is generated from network with $k_0 = 50$ neurons. Overparametrized network has k = 100 neurons¹.

Without some modification of the loss, SGD will get trapped.

¹Experiment was suggested by Livni et al. 2014

Jason Lee

Conventional Wisdom on Overparametrization

If SGD is not finding a low training error solution, then fit a more expressive model until the training error is near zero.

Problem

How much over-parametrization do we need to efficiently optimize + generalize?

- Adding parameters increases computational and memory cost.
- Too many parameters may lead to overfitting (???).

How much Overparametrization to Optimize?

Motivating Question

How much overparametrization ensures success of SGD?

- Empirically $p \gg n$ is necessary, where p is the number of parameters.
- Very unrigorous calculations suggest $p = \text{constant} \times n$ suffices

Interlude: Residual Networks

Deep Feedforward Networks

$$\begin{split} x^{(0)} &= \text{input data} \\ x^{(l)} &= \sigma(W_l x^{(l-1)}) \\ f(x) &= a^\top x^{(L)} \end{split}$$

Deep Feedforward Networks

$$egin{aligned} x^{(0)} &= ext{input data} \ x^{(l)} &= \sigma(W_l x^{(l-1)}) \ f(x) &= a^ op x^{(L)} \end{aligned}$$

Empirically, it is difficult to train deep feedforward networks so Residual Networks were proposed:

Deep Feedforward Networks

 $egin{aligned} x^{(0)} &= ext{input data} \ x^{(l)} &= \sigma(W_l x^{(l-1)}) \ f(x) &= a^ op x^{(L)} \end{aligned}$

Empirically, it is difficult to train deep feedforward networks so Residual Networks were proposed:

Residual Networks (He et al.)

ResNet of width m and depth L:

$$\begin{split} x^{(0)} &= \text{input data} \\ x^{(l)} &= x^{(l-1)} + \sigma(W_l x^{(l-1)}) \\ f(x) &= a^\top x^{(L)} \end{split}$$

Theorem (Du-Lee-Li-Wang-Zhai)

Consider a width m and depth L residual network with a smooth ReLU activation σ (or any differentiable activation). Assume that $m = O(n^4 L^2)$, then gradient descent converges to a global minimizer with train loss 0.

• Same conclusion for ReLU, SGD, and variety of losses (hinge, logistic) if $m=O(n^{30}L^{30})$ (see Allen-Zhu-Li-Song and Zou et al.)

Two layer net:
$$f(x) = \sum_{r=1}^{m} a_r \sigma(w_r^{\top} x)$$
.

How much do parameters need to move?

- Assume $a_r^0 = \pm \frac{1}{\sqrt{m}}$, $w_r^0 \sim N(0, I)$, and $\|x\| = 1$.
- Let $w_r = w_r^0 + \delta_r$. Crucial Lemma: $\delta_r = O(\frac{1}{\sqrt{m}})$ moves the prediction by O(1).

Two layer net:
$$f(x) = \sum_{r=1}^{m} a_r \sigma(w_r^{\top} x)$$
.

How much do parameters need to move?

- Assume $a_r^0 = \pm \frac{1}{\sqrt{m}}$, $w_r^0 \sim N(0, I)$, and $\|x\| = 1$.
- Let $w_r = w_r^0 + \delta_r$. Crucial Lemma: $\delta_r = O(\frac{1}{\sqrt{m}})$ moves the prediction by O(1).

As the network gets wider, then each parameter moves less, and there is a global minimizer near the random initialization.

- Gradient Descent converges to global minimizers of the train loss when networks are sufficiently overparametrized.
- Current bound requires n^4L^2 and in practice n is sufficient.
- No longer true if the weights are regularized.
- The best generalization bound one can prove using this technique matches a kernel method² (Arora et al., Jacot et al., Chizat-Bach, Allen-Zhu et al.).

²includes low-degree polynomials and activations with power series coefficients that decay geometrically.

- Training data (x_i, y_i) with label $y \in \{-1, 1\}$.
- **2** Classifier is sign(f(W; x)), where f is a neural net with parameters W.
- 3 Margin $\bar{\gamma} = \min_i y_i f(W; x)$.
- We assume networks are overparametrized and can separate the data.

Margin Theory

Normalized margin $\gamma(W) = \min_i y_i f(\frac{W}{\|W\|_2}, x_i)$. When γ is large, the network predicts the correct label with high confidence.

• Large margin guarantees generalization bounds (Bartlett et al., Neyshabur et al., Golowich et al.)

$$\Pr(yf(W;x) < 0) \lesssim \frac{\mathcal{R}(W)}{\bar{\gamma}}$$

Margin Theory

Normalized margin $\gamma(W) = \min_i y_i f(\frac{W}{\|W\|_2}, x_i)$. When γ is large, the network predicts the correct label with high confidence.

• Large margin guarantees generalization bounds (Bartlett et al., Neyshabur et al., Golowich et al.)

$$\Pr(yf(W;x) < 0) \lesssim \frac{\mathcal{R}(W)}{\bar{\gamma}}.$$

Large margin

Do we obtain large margin classifiers in Deep Learning?

Regularized Loss

Neural networks are train via minimizing the regularized cross-entropy loss:

 $\ell(f(W;x)) + \lambda \|W\|.$

Regularized Loss

Neural networks are train via minimizing the regularized cross-entropy loss:

 $\ell(f(W;x)) + \lambda \|W\|.$

Theorem (Wei-Lee-Liu-Ma 2018)

Let f be a positive homogeneous network and $\gamma^* = \max_{\|W\| \le 1} \min_{i \in [n]} y_i f(W; x_i)$ be the optimal normalized margin.

- Minimizing cross-entropy loss is max-margin: γ(W_λ) → γ^{*}.
- The optimal margin is an increasing function of network size.
- Choosing a small but fixed λ leads to approximate max-margin.
- When $f(x) = \langle w, x \rangle$ reduces to the result of Rosset, Zhu, and Hastie.

Imagine λ is very small, so that $y_i f(W; x_i)$ is very large.

$$L_{\lambda}(W) = \sum_{i} \log(1 + \exp(-y_i f(W; x_i))) + \lambda ||W||$$

$$\approx \sum_{i} \exp(-y_i f(W; x_i)) + \lambda ||W||$$

$$\approx \max_{i \in [n]} \exp(-y_i f(W; x_i)) + \lambda ||W||$$

$$\approx \exp(-\gamma(W)) + \lambda ||W||.$$

Thus among solutions with the same norm, we will obtain a solution with $\gamma(W)$ largest.

Does large margin lead to parameter-independent generalization in Neural Networks?

Does large margin lead to parameter-independent generalization in Neural Networks?

Parameter-independent Generalization Bounds (Neyshabur et al.)

Let $f(W; x) = W_2 \sigma(W_1 x)$.

$$\Pr\left(yf(W;x) < 0\right) \lesssim \frac{1}{\gamma\sqrt{n}}.$$

• Completely independent of the number of parameters.

Deep Feedforward Network (Golowich, Rakhlin and Shamir)

Let $f(W; x) = W_L \sigma(W_{L-1} \dots W_2 \sigma(W_1 x)).$

$$\Pr\left(yf(W;x)<0\right) \lesssim \sqrt{L} \frac{\prod_{j=1}^{L} \|W_j\|_F}{\bar{\gamma}\sqrt{n}}$$

and $\bar{\gamma}$ is un-normalized margin.

Deep Feedforward Network (Golowich, Rakhlin and Shamir)

Let $f(W; x) = W_L \sigma(W_{L-1} \dots W_2 \sigma(W_1 x))$.

$$\Pr\left(yf(W;x)<0\right) \lesssim \sqrt{L} \frac{\prod_{j=1}^{L} \|W_j\|_F}{\bar{\gamma}\sqrt{n}}$$

and $\bar{\gamma}$ is un-normalized margin.

- $\frac{\prod_{j=1}^{L} ||W_j||_F}{\bar{\gamma}} = \gamma$ is the normalized margin.
- $\prod_{j=1}^{L} \|W_j\|_F = \frac{1}{L^{L/2}} \|\operatorname{vec}(W_1, \dots, W_L)\|_2^L = \frac{1}{L^{L/2}} \|W\|_2^L$ at a minimizer.

 $\ell_2\text{-regularizer guarantees a "size-independent" bound.$

Does GD Minimize Regularized Loss?

Training Loss

Let
$$f(x; W) = \sum_{r=1}^{m} a_r \sigma(\langle w_r, x \rangle)$$
 with $\sigma = \text{ReLU}$.

$$\min_{W} \sum_{i} \ell(f(x_i; W), y_i) + \frac{\lambda}{2} \sum_{r=1}^{m} \left(a_r^2 + \|w_r\|_2^2 \right).$$

- Imagine the network is infinitely wide $m \to \infty$, and we run gradient descent.
- 2 The density $\rho = \frac{1}{m} \sum_{j=1}^{m} \delta_{(a_j, w_j)}$ is updated according to a Wasserstein flow induced by gradient descent.

Theorem (Very Informal, see arXiv)

For a two-layer network that is infinitely wide (or $\exp(d)$ wide), gradient descent with noise converges to a global minimum of the regularized training loss in number of iterations $T \leq \frac{d^2}{\epsilon^4}$.

- Overparametrization helps gradient descent find solutions of low train loss³
- Noise is crucial to minimize the regularized loss. The noise is not on the parameters w, but on the density ρ .

³see also Chizat-Bach, Mei-Montanari-Nguyen

Corollary

Let $\sigma(z) = z^2$. If $m \ge \sqrt{n}$, then SGD finds a global minimum of the regularized loss. Furthermore if $y \sum_{j=1}^{m_0} a_j \sigma(w_j^\top x) \ge 1$. Then for $n \gtrsim \frac{dm_0^2}{\epsilon^2}$, SGD finds a solution

 $L_{te}(W_t) \lesssim \epsilon.$

The sample complexity is independent of m, the number of neurons.

Figure: Credit: Neyshabur et al. See also Zhang et al.

- p ≫ n, no regularization, no early stopping, and yet we do not overfit.
- In fact, test error decreases even after the train error is zero.
- Weight decay helps a little bit (< 2%), but generalization is already good without any regularization.

Figure: Credit: Neyshabur et al. See also Zhang et al.

Problem

Why does SGD (with no regularization) not overfit?

Theorem

Let $f_i(W) \triangleq f(W; x_i)$ be the prediction of a differentiable homogeneous network on datapoint x_i . Gradient Descent converges^a to a first-order optimal point of the non-linear SVM:

> $\min \|W\|_2$ st $y_i f_i(W) \ge 1$.

GD is implicitly regularizing ℓ_2 -norm of parameters.

^aTechnical assumptions on limits existing is needed.

Open Problem

Under what assumptions will GD converge to a global max-margin?

Implicit Regularization in Homogeneous Networks

- Quadractic Activation Network⁴: p(W) = WW^T leads to an implicit nuclear norm regularizer, and thus a preference for networks with a small number of neurons
- 2 Linear Network⁵: $p(W) = W_L \dots W_1$ leads to an Schatten quasi-norm regularizer $||p(W)||_{2/L}$
- **③** Linear Convolutional Network: Sparsity regularizer $\|\cdot\|_{2/L}$ in the Fourier domain.
- **9** Feedforward Network: Size-independent complexity bound⁶

⁴see also Gunasekar et al. 2017, Li et al. 2017
⁵see also Ji-Telgarsky
⁶Golowich-Rakhlin-Shamir

Conclusion and Future Work

- Overparametrization: Designs the landscape to make gradient methods succeed.
 - Current theoretical results are off by an order of magnitude in the necessary size.

2 Generalization is possible in the over-parametrized regime.

- Explicit Regularization: Leads to large margin classifiers, and low statistical complexity.
- Implicit Regularization: The choice of algorithm and parametrization constrain the effective complexity of the chosen model.
- **③** We understand only very simple models and settings.
 - Deep Learning is used in a black-box fashion in many downstream tasks (e.g. as a function approximator)

- Gunasekar, Lee, Soudry, and Srebro, Implicit Bias of Gradient Descent on Linear Convolutional Networks.
- ② Davis, Drusvyatskiy, Sham Kakade, and Jason D. Lee, Stochastic subgradient method converges on tame functions.
- Lee, Simchowitz, Jordan, and Recht, Gradient Descent Converges to Minimizers.
- Skakade and Lee, Provably Correct Automatic Subdifferentiation for Qualified Programs.
- Du, Lee, Li, Wang, and Zhai. Gradient Descent Finds Global Minimizers of Deep Neural Networks.
- Gunasekar, Lee, Soudry and Srebro, *Characterizing Implicit Bias in Terms of Optimization Geometry.*
- Wei, Lee, Liu, and Ma, On the Margin Theory of Neural Networks.
- Ou and Lee, On the Power of Over-parametrization in Neural Networks with Quadratic Activation

Thank You. Questions?