
Offline Reinforcement Learning with Realizability
and Single-policy Concentrability

Jason D. Lee

February 24, 2022

Wenhao Zhan Baihe Huang Audrey Huang Nan Jiang

Princeton PKU UIUC UIUC

Figures borrowed from Yuxin Chen, Shicong Cen, and Simon Du.

Recent successes in RL

2

Markov decision process (MDP)

• A collection of MABs indexed by state s ∈ S.
• At time step t, an agent observes the state st, selects an

action at ∼ π(·|st), and then receives a reward r(st, at).

• The environment transitions to a new state st+1 ∼ P (·|st, at).

state st

action at

state st+1 action at+1

3

Markov decision process (MDP)

• A collection of MABs indexed by state s ∈ S.
• At time step t, an agent observes the state st, selects an

action at ∼ π(·|st), and then receives a reward r(st, at).

• The environment transitions to a new state st+1 ∼ P (·|st, at).

state st action at

state st+1

action at+1

3

Markov decision process (MDP)

• A collection of MABs indexed by state s ∈ S.
• At time step t, an agent observes the state st, selects an

action at ∼ π(·|st), and then receives a reward r(st, at).

• The environment transitions to a new state st+1 ∼ P (·|st, at).

state st action at

state st+1 action at+1

3

Value function and Q-function

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

1

agent environment st at st+1 rt+1 reward state action

1

agent environment st at st+1 rt

1

agent environment st at st+1 rt

1

agent environment st at st+1 rt

1

agent environment st at st+1 rt+1 reward state action

1

agent environment st at st+1 rt = r(st, at) reward next state action

1

agent environment st at st+1 ⇠ P (·|st, at) rt = r(st, at) reward
next state action

1

agent environment st at st+1 rt+1 reward state action

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

⇠ ⇠ ⇠ ⇠ ⇠

⇡(·|s0) ⇡(·|s1) ⇡(·|s2) ⇡(·|s3) ⇡(·|s4)

Value function and state-action (Q) function of policy π:

∀s ∈ S : V π(s) := E

[∞∑
t=0

γtrt
∣∣ s0 = s

]

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[∞∑
t=0

γtrt
∣∣ s0 = s, a0 = a

]

• Long-term discounted reward: γ ∈ [0, 1) is the discount factor

• Expectation is w.r.t. the sampled trajectory under π
4

Reinforcement learning (RL)

Reinforcement Learning: online vs offline

online offline

offline: no interaction with the environment!

5

Reinforcement learning (RL)

Reinforcement Learning: online vs offline

online offline

offline: no interaction with the environment!

5

Reinforcement learning (RL)

Challenges in RL: bigS!

Go game: ≳ 10700 states Mario: 256256×400

How to design provably efficient methods for RL?

6

Reinforcement learning (RL)

Challenges in RL: bigS!

Go game: ≳ 10700 states Mario: 256256×400

How to design provably efficient methods for RL?

6

Surely, RL has been solved?

Best result* B⋆SH3/ϵ2 for Mario�: ≥ 10250000

1/12 of the output!
*XJWXB21, B⋆ is some measure of distribution shift.
�

7

Answer to the Ultimate Question of Life: Deep Learning

Function Approximation

f ∈ F

Linear

Kernel

Neural Network

With O(log |F|
ϵ2

) samples we can
learn ϵ-optimal predictor by
ERM.

|F|: cardinality of F .

8

Let’s first look at Online RL + Function Approximation

Huge slew of negative results:

• Linear function approximation even with gap conditions is
hard*

• Simplest neural net function approximation is hard �

Positive results:

• Bilinear classes� is essentially the broadest class.

• Almost all positive results rely on elliptic potential lemma,
so are linear in some way.

Basically only Linear Online RL is possible.

*WAJAYJS21, WWK21
�DYM21
�DKLLMSW

9

Let’s first look at Online RL + Function Approximation

Huge slew of negative results:

• Linear function approximation even with gap conditions is
hard*

• Simplest neural net function approximation is hard �

Positive results:

• Bilinear classes� is essentially the broadest class.

• Almost all positive results rely on elliptic potential lemma,
so are linear in some way.

Basically only Linear Online RL is possible.

*WAJAYJS21, WWK21
�DYM21
�DKLLMSW

9

Is offline RL harder than online RL?

• After the bilinear paper , I became depressed about
online/offline RL.

• My reasoning: offline RL is harder than online RL, and online
is already impossible.

So, I went to work on the simulator setting where you can use
Neural Nets*.

Wait, you can aim lower in offline RL!

*HHKLLWa21,HHKLLWb21
10

Is offline RL harder than online RL?

• After the bilinear paper , I became depressed about
online/offline RL.

• My reasoning: offline RL is harder than online RL, and online
is already impossible.

So, I went to work on the simulator setting where you can use
Neural Nets*.

Wait, you can aim lower in offline RL!

*HHKLLWa21,HHKLLWb21
10

Is offline RL harder than online RL?

• After the bilinear paper , I became depressed about
online/offline RL.

• My reasoning: offline RL is harder than online RL, and online
is already impossible.

So, I went to work on the simulator setting where you can use
Neural Nets*.

Wait, you can aim lower in offline RL!

*HHKLLWa21,HHKLLWb21
10

Easier Problem: Transfer Learning

Density Ratio B∗ := maxx
ptgt
psrc

(x). For many function classes
(e.g. kernel methods), the transfer difficulty is characterized
density ratio*:

minimax ≍ (B⋆/n)c,

c is the exponent without distribution shift.

Analogous result for Offline RL

The best you can hope for is B⋆ log |F|poly(1
1−γ

)

ϵc , and all the hard
part of online RL is hidden in B⋆.

TLDR: Offline RL is easier, because we can aim lower!

*MPW2022
11

Model and Notations

Model:

• infinite horizon MDP M = {S,A, P, r, γ, µ0}.
• offline dataset D = {(si, ai, ri, s′i)}ni=1 where (si, ai) ∼ dD,

ri = r(si, ai), s
′
i ∼ P (·|si, ai).

• dD is unknown. Denote dD(a|s) by πD(a|s).
• µ0 is unknown: Assume access to i.i.d. samples

D0 = {s0,j}n0
j=1 from µ0.

Notations:

• dπ: discounted state visitation probability under policy π.

• Qπ(s, a) = E
[∑∞

t=0 γ
tr(st, at)

∣∣s0 = s, a0 = a, π
]
.

• V π(s) = E
[∑∞

t=0 r(st, at)
∣∣s0 = s, π

]
.

12

Model and Notations

Model:

• infinite horizon MDP M = {S,A, P, r, γ, µ0}.
• offline dataset D = {(si, ai, ri, s′i)}ni=1 where (si, ai) ∼ dD,

ri = r(si, ai), s
′
i ∼ P (·|si, ai).

• dD is unknown. Denote dD(a|s) by πD(a|s).
• µ0 is unknown: Assume access to i.i.d. samples

D0 = {s0,j}n0
j=1 from µ0.

Notations:

• dπ: discounted state visitation probability under policy π.

• Qπ(s, a) = E
[∑∞

t=0 γ
tr(st, at)

∣∣s0 = s, a0 = a, π
]
.

• V π(s) = E
[∑∞

t=0 r(st, at)
∣∣s0 = s, π

]
.

12

Offline RL should be easy right?

What should F approximate?

Value Function Approximation: Approximate Q⋆ via function
class F .
Value Function Approximation: Approximate Q⋆ via function
class F .

Can we attain poly(B⋆, log |F|, 1ϵ , 1
1−γ) sample complexity to find

optimal policy?

13

Offline RL should be easy right?

What should F approximate?

Value Function Approximation: Approximate Q⋆ via function
class F .

Value Function Approximation: Approximate Q⋆ via function
class F .

Can we attain poly(B⋆, log |F|, 1ϵ , 1
1−γ) sample complexity to find

optimal policy?

13

Offline RL should be easy right?

What should F approximate?

Value Function Approximation: Approximate Q⋆ via function
class F .

Value Function Approximation: Approximate Q⋆ via function
class F .

Can we attain poly(B⋆, log |F|, 1ϵ , 1
1−γ) sample complexity to find

optimal policy?

13

No!

In concurrent work*, this has been shown to be impossible.

Theorem (FKSlX21)

There is a family of MDPs (with A = 2, B⋆ ≤ 16, and realizable
value function |F| = 2) such that any algorithm needs n ≥ S1/3 to
attain

J(π⋆)− J(π̂) ≥ .01

1− γ
.

Similar lower bound holds even under strong concetrability
(all-policy concentrability).

First conjectured by Chen and Jiang in 2019.

*FKSlX21
14

Should we give up?

The whole point is to break lower bounds!

Potential Assumptions:

• Completeness

• Super strong Concentrability

15

Completeness

Function class is closed under Bellman update:
For all f ∈ F , Tf ∈ F .

What is wrong with this?

• Non-monotone: increasing the approximation power of F may
cause completeness to be more violated.

• Pretrained representation are realizable, yet do not work
empirically under distribution shift in algorithms that require
completeness*.

*WFK22
16

What if F is universal?

But my F is universal, so it has to be complete!

NO!!!!!!
• Have to use function classes of bounded complexity (e.g.
RKHS norm ball, finite-capacity network)

• Bellman operator may not preserve the bounded complexity.

17

What if F is universal?

But my F is universal, so it has to be complete!

NO!!!!!!
• Have to use function classes of bounded complexity (e.g.
RKHS norm ball, finite-capacity network)

• Bellman operator may not preserve the bounded complexity.

17

What if F is universal?

But my F is universal, so it has to be complete!

NO!!!!!!
• Have to use function classes of bounded complexity (e.g.
RKHS norm ball, finite-capacity network)

• Bellman operator may not preserve the bounded complexity.

17

Algorithms that work with Completeness

• Approximate Dynamic Programming* (Fitted Q Iteration)

• Minimax FQI �

• Bellman-consistent Pessismism�

• Many others...

*EGW05,CJ19
�CJ19
�XCJMA21

18

Concentrability

Many types of distribution ratio/concentrability:

• Single-policy : ∥dπ
∗

dD
∥∞ ≤ B⋆

• All-policy: ∥ dπ

dD
∥∞ ≤ Bπ for all π

• Super-strong: ∥p(·|s,a)
dD(·) ∥∞ ≤ BP for all s, a

19

Positive result under super-strong assuptions

Only positive result under realizability* is from Chen and Jiang:

n ≥ poly(BP ,
1

ϵ
,

1

1− γ
)

When does this hold?

• Known example is when dynamics P have low non-negative
rank and µ is average of the rows of P (s′).

*Not comparing to model-based methods, since realizable implies
completeness.

20

Positive result under super-strong assuptions

Only positive result under realizability* is from Chen and Jiang:

n ≥ poly(BP ,
1

ϵ
,

1

1− γ
)

When does this hold?

• Known example is when dynamics P have low non-negative
rank and µ is average of the rows of P (s′).

*Not comparing to model-based methods, since realizable implies
completeness.

20

Compare to transfer learning

Transfer learning is possible under the weakest density ratio
condition:

∥ptgt
psrc

∥∞ ≤ B⋆ equiv to ∥d
π∗

dD
∥∞ ≤ B⋆

21

Pessimism

Pessimism is a recently developed technique that allows us to use
single-point density ratio:

• Pioneered in Linear MDP*

• Bellman-consistent Pessimism for general function class
(under completeness) �

• All known algorithms that allow single-point or all-policy ratio
require completeness.

*JYY20, earlier works also use it, but do not analyze.
�XCJMA21

22

Offline RL

Challenges in offline RL

• Distribution shift → Super strong concentrability

• Function approximation → Bellman-completeness

Both assumptions are very strong and are violated in practice!

Is sample-efficiency possible with realizability and single-policy
concentrability?

23

Offline RL

Challenges in offline RL

• Distribution shift → Super strong concentrability

• Function approximation → Bellman-completeness

Both assumptions are very strong and are violated in practice!

Is sample-efficiency possible with realizability and single-policy
concentrability?

23

Back to the basics: LP

Dual LP

max
d≥0

E(s,a)∼d[r(s, a)] (1)

s.t. d(s) = (1− γ)µ0(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′) (2)

where d ∈ R|S×A|, d(s) =
∑

a d(s, a),

Bellman flow constraints ⇐⇒ d is induced by a policy π.

24

Primal-dual form

Primal-dual LP for MDPs

max
d≥0

min
v

Lα(v, w) := (1− γ)Es∼µ0 [v(s) + E(s,a)∼d[ev(s, a)],

where ev(s, a) = r(s, a) + γ
∑

P (s′|s,a) v(s
′)− v(s).

• Inspired by bilinear π-learning* and OptiDice�

*W17,W19
�LJPLK21

25

Offline primal-dual

Change of variables: w(s, a) = d(s,a)
dD(s,a)

Offline primal-dual LP for MDPs

max
w≥0

min
v

Lα(v, w) := (1− γ)Es∼µ0 [v(s)] + E(s,a)∼dD [w(s, a)ev(s, a)].

Computable from samples!

26

Difficulties with primal-dual

max
w≥0

min
v

Lα(v, w) := (1− γ)Es∼µ0 [v(s)] + E(s,a)∼dD [w(s, a)ev(s, a)].

• Not strongly concave in w, so no uniqueness.

• Nature can randomize over instances, to force errors when
there is zeroes in w (counterexample in the paper).

27

Density regularization to the rescue

Problem: Regularized Maximin

max
w≥0

min
v

Lα(v, w) :=(1− γ)Es∼µ0 [v(s)]− αE(s,a)∼dD [f(w(s, a))]

+ E(s,a)∼dD [w(s, a)ev(s, a)], (3)

where ev(s, a) = r(s, a) + γ
∑

P (s′|s,a) v(s
′)− v(s).

Denote the optimizer as (v∗α, w
∗
α).

28

Interpretation: Density Regularization

• Policy optimization: maxπ J(π) = E(s,a)∼dπ [r(s, a)].

• Density Regularization:

max
π

JD,f (π) = E(s,a)∼dπ [r(s, a)]− αDf (d
π∥dD),

where α > 0, Df (d
π∥dD) = E(s,a)∼dD [

dπ(s,a)
dD(s,a)

] is an

f -divergence.

Encourages dπ to stay close to dD.

• Suggested explanation from DICE family of algorithms and
most offline algorithms.

29

Interpretation: Density Regularization

• Policy optimization: maxπ J(π) = E(s,a)∼dπ [r(s, a)].

• Density Regularization:

max
π

JD,f (π) = E(s,a)∼dπ [r(s, a)]− αDf (d
π∥dD),

where α > 0, Df (d
π∥dD) = E(s,a)∼dD [

dπ(s,a)
dD(s,a)

] is an

f -divergence.

Encourages dπ to stay close to dD.

• Suggested explanation from DICE family of algorithms and
most offline algorithms.

29

Interpretation II: Density Regularization

Uniqueness: Density regularization leads to strong concavity in
the primal-dual, and thus unique w∗

α. Suppose d∗α is the optimum

of the regularized LP, then we can extract the regularized optimal
policy π∗

α via:

π∗
α(s|a) :=

{
d∗α(s,a)∑
a d∗α(s,a)

, for
∑

a d
∗
α(s, a) > 0,

1
|A| , else.

∀s ∈ S, a ∈ A.

When α > 0 and f is strongly-convex, d∗α and π∗
α are unique!

30

Interpretation II: Density Regularization

Uniqueness: Density regularization leads to strong concavity in
the primal-dual, and thus unique w∗

α. Suppose d∗α is the optimum

of the regularized LP, then we can extract the regularized optimal
policy π∗

α via:

π∗
α(s|a) :=

{
d∗α(s,a)∑
a d∗α(s,a)

, for
∑

a d
∗
α(s, a) > 0,

1
|A| , else.

∀s ∈ S, a ∈ A.

When α > 0 and f is strongly-convex, d∗α and π∗
α are unique!

30

PRO-RL

Function classes: V ⊆ R|S| and W ⊆ R|S|×|A|
+

Algorithm: PRO-RL

(ŵ, v̂) = arg max
w∈W

argmin
v∈V

L̂α(v, w), (4)

where

L̂α(v, w) :=(1− γ)
1

n0

n0∑
j=1

[v(s0,j)] +
1

n

n∑
i=1

[−αf(w(si, ai))]

+
1

n

n∑
i=1

[w(si, ai)ev(si, ai, ri, s
′
i)], (5)

and ev(s, a, r, s
′) = r + γv(s′)− v(s).

Denote the optimizer as (v∗α, w
∗
α).

31

PRO-RL: policy extraction

Assume πD is known for now, dD(s, a) = dD(s)πD(a|s). Then the
final learned policy is:

π̂(a|s) =
{

ŵ(s,a)πD(a|s)∑
a′ ŵ(s,a′)πD(a′|s) , for

∑
a′ ŵ(s, a

′)πD(a
′|s) > 0,

1
|A| , else,

When πD is unknown, use behavior cloning to extract the policy!

32

PRO-RL: policy extraction

Assume πD is known for now, dD(s, a) = dD(s)πD(a|s). Then the
final learned policy is:

π̂(a|s) =
{

ŵ(s,a)πD(a|s)∑
a′ ŵ(s,a′)πD(a′|s) , for

∑
a′ ŵ(s, a

′)πD(a
′|s) > 0,

1
|A| , else,

When πD is unknown, use behavior cloning to extract the policy!

32

Assumptions

• Concentrability: d∗α(s,a)
dD(s,a)

≤ Bα
w, ∀s ∈ S, a ∈ A.

• Realizability: v∗α ∈ V, w∗
α ∈ W.

• Properties of f :
• Strong Convexity: f is Mf -strongly-convex,
• Boundedness: |f ′(x)| ≤ Bf ′,α, |f(x)| ≤ Bf,α,∀0 ≤ x ≤ Bα

w.
• Non-negativity: f(x) ≥ 0,∀x ∈ R.

• Boundedness of the function classes:
• 0 ≤ w(s, a) ≤ Bα

w,∀s ∈ S, a ∈ A, w ∈ W ,

• ∥v∥∞ ≤ Bv,α :=
αBf′,α+1

1−γ ,∀v ∈ V .

Single-policy concentrability and only realizability !

33

Assumptions

• Concentrability: d∗α(s,a)
dD(s,a)

≤ Bα
w, ∀s ∈ S, a ∈ A.

• Realizability: v∗α ∈ V, w∗
α ∈ W.

• Properties of f :
• Strong Convexity: f is Mf -strongly-convex,
• Boundedness: |f ′(x)| ≤ Bf ′,α, |f(x)| ≤ Bf,α,∀0 ≤ x ≤ Bα

w.
• Non-negativity: f(x) ≥ 0,∀x ∈ R.

• Boundedness of the function classes:
• 0 ≤ w(s, a) ≤ Bα

w,∀s ∈ S, a ∈ A, w ∈ W ,

• ∥v∥∞ ≤ Bv,α :=
αBf′,α+1

1−γ ,∀v ∈ V .

Single-policy concentrability and only realizability !

33

Assumptions

• Concentrability: d∗α(s,a)
dD(s,a)

≤ Bα
w, ∀s ∈ S, a ∈ A.

• Realizability: v∗α ∈ V, w∗
α ∈ W.

• Properties of f :
• Strong Convexity: f is Mf -strongly-convex,
• Boundedness: |f ′(x)| ≤ Bf ′,α, |f(x)| ≤ Bf,α,∀0 ≤ x ≤ Bα

w.
• Non-negativity: f(x) ≥ 0,∀x ∈ R.

• Boundedness of the function classes:
• 0 ≤ w(s, a) ≤ Bα

w,∀s ∈ S, a ∈ A, w ∈ W ,

• ∥v∥∞ ≤ Bv,α :=
αBf′,α+1

1−γ ,∀v ∈ V .

Single-policy concentrability and only realizability !

33

Assumptions

• Concentrability: d∗α(s,a)
dD(s,a)

≤ Bα
w, ∀s ∈ S, a ∈ A.

• Realizability: v∗α ∈ V, w∗
α ∈ W.

• Properties of f :
• Strong Convexity: f is Mf -strongly-convex,
• Boundedness: |f ′(x)| ≤ Bf ′,α, |f(x)| ≤ Bf,α,∀0 ≤ x ≤ Bα

w.
• Non-negativity: f(x) ≥ 0,∀x ∈ R.

• Boundedness of the function classes:
• 0 ≤ w(s, a) ≤ Bα

w,∀s ∈ S, a ∈ A, w ∈ W ,

• ∥v∥∞ ≤ Bv,α :=
αBf′,α+1

1−γ ,∀v ∈ V .

Single-policy concentrability and only realizability !

33

Statistical error

Statistical error term that arises in analysis:

Definition

ϵstat := (1−γ)Bv·
(
2 log 4|V |

δ

n

) 1
2

+(αBf +BwBe)·
(
2 log 4|V ||W |

δ

n

) 1
2

.

ϵstat characterizes the statistical error L̂α(v, w)− Lα(v, w) based
on elementary concentration (unbiased)!

34

Statistical error

Statistical error term that arises in analysis:

Definition

ϵstat := (1−γ)Bv·
(
2 log 4|V |

δ

n

) 1
2

+(αBf +BwBe)·
(
2 log 4|V ||W |

δ

n

) 1
2

.

ϵstat characterizes the statistical error L̂α(v, w)− Lα(v, w) based
on elementary concentration (unbiased)!

34

Sample complexity

Theorem (Sample complexity of learning π∗
α)

Fix α > 0. Suppose assumptions hold for the said α. Then with at
least probability 1− δ, the output of PRO-RL satisfies:

J(π∗
α)− J(π̂) ≤ 4

1− γ

√
ϵstat
αMf

.

f(x) =
Mf

2 x2 → n = Õ
(

(Bw,α)2

(1−γ)6(αMf)2ϵ4
+

(Bw,α)4

(1−γ)6ϵ4

)
.

35

Sample complexity

Theorem (Sample complexity of learning π∗
α)

Fix α > 0. Suppose assumptions hold for the said α. Then with at
least probability 1− δ, the output of PRO-RL satisfies:

J(π∗
α)− J(π̂) ≤ 4

1− γ

√
ϵstat
αMf

.

f(x) =
Mf

2 x2 → n = Õ
(

(Bw,α)2

(1−γ)6(αMf)2ϵ4
+

(Bw,α)4

(1−γ)6ϵ4

)
.

35

Sample complexity of competing with π∗
0

Corollary (Sample complexity of competing with π∗
0)

Suppose there exists d∗0 ∈ D∗
0 with concentrability (not unique).

Assume the realizability holds for α = αϵ :=
ϵ

2Bf,0
. For

n ≳
(ϵBf,αϵ + 2Bw,αϵBe,αϵBf,0)

2

ϵ6M2
f (1− γ)4

log
4|V||W|

δ
,

the output of PRO-RL with input α = αϵ satisfies

J(π∗
0)− J(π̂) ≤ ϵ,

with probability greater than 1− δ.

Efficient learning with single-policy concentrability and
realizability!

36

Sample complexity of competing with π∗
0

Corollary (Sample complexity of competing with π∗
0)

Suppose there exists d∗0 ∈ D∗
0 with concentrability (not unique).

Assume the realizability holds for α = αϵ :=
ϵ

2Bf,0
. For

n ≳
(ϵBf,αϵ + 2Bw,αϵBe,αϵBf,0)

2

ϵ6M2
f (1− γ)4

log
4|V||W|

δ
,

the output of PRO-RL with input α = αϵ satisfies

J(π∗
0)− J(π̂) ≤ ϵ,

with probability greater than 1− δ.

Efficient learning with single-policy concentrability and
realizability!

36

Comparison with existing algorithms

The first algorithm to achieve efficient learning with single-policy
concentrability and only realizability!

37

Comparison with existing algorithms

The first algorithm to achieve efficient learning with single-policy
concentrability and only realizability!

37

Proof sketch for Theorem

Intuition: invariance of saddle points

Lemma

Suppose (x∗, y∗) is a saddle point of f(x, y) over X × Y, then for
any X ′ ⊆ X and Y ′ ⊆ Y, if (x∗, y∗) ∈ X ′ × Y ′, we have:

(x∗, y∗) ∈ arg min
x∈X ′

argmax
y∈Y ′

f(x, y),

(x∗, y∗) ∈ argmax
y∈Y ′

arg min
x∈X ′

f(x, y).

Optimizing over V ×W instead of R|S| × R|S||A|
+ can still find

(v∗α, w
∗
α).

38

Proof sketch for Theorem

Intuition: invariance of saddle points

Lemma

Suppose (x∗, y∗) is a saddle point of f(x, y) over X × Y, then for
any X ′ ⊆ X and Y ′ ⊆ Y, if (x∗, y∗) ∈ X ′ × Y ′, we have:

(x∗, y∗) ∈ arg min
x∈X ′

argmax
y∈Y ′

f(x, y),

(x∗, y∗) ∈ argmax
y∈Y ′

arg min
x∈X ′

f(x, y).

Optimizing over V ×W instead of R|S| × R|S||A|
+ can still find

(v∗α, w
∗
α).

38

Concentration of L̂α(v, w)

Step 1: bound |L̂α(v, w)− Lα(v, w)| via Hoeffding’s inequality
and union bound.

Lemma

With at least probability 1− δ, for all v ∈ V and w ∈ W we have:

|L̂α(v, w)− Lα(v, w)| ≤ ϵstat.

39

Near-optimal ŵ

Step 2: bound ∥ŵ − w∗
α∥2,dD via strong concavity.

Lemma

With at least probability 1− δ,

Lα(v
∗
α, w

∗
α)− Lα(v

∗
α, ŵ) ≤ 2ϵstat.

Lemma

With at least probability 1− δ,

∥ŵ − w∗
α∥2,dD ≤

√
4ϵstat
αMf

.

40

Near-optimal ŵ

Step 2: bound ∥ŵ − w∗
α∥2,dD via strong concavity.

Lemma

With at least probability 1− δ,

Lα(v
∗
α, w

∗
α)− Lα(v

∗
α, ŵ) ≤ 2ϵstat.

Lemma

With at least probability 1− δ,

∥ŵ − w∗
α∥2,dD ≤

√
4ϵstat
αMf

.

40

Near-optimal π̂

Step 3: bound Es∼d∗α [∥π∗
α(s, ·)− π̂(s, ·)∥1] and J(π∗

α)− J(π̂) via
performance difference lemma.

Lemma

Es∼d∗α [∥π∗
α(s, ·)− π̂(s, ·)∥1] ≤ 2∥ŵ − w∗

α∥2,dD .

Lemma

J(π∗
α)− J(π̂) ≤ 1

1− γ
Es∼d∗α [∥π∗

α(s, ·)− π̂(s, ·)∥1].

41

Near-optimal π̂

Step 3: bound Es∼d∗α [∥π∗
α(s, ·)− π̂(s, ·)∥1] and J(π∗

α)− J(π̂) via
performance difference lemma.

Lemma

Es∼d∗α [∥π∗
α(s, ·)− π̂(s, ·)∥1] ≤ 2∥ŵ − w∗

α∥2,dD .

Lemma

J(π∗
α)− J(π̂) ≤ 1

1− γ
Es∼d∗α [∥π∗

α(s, ·)− π̂(s, ·)∥1].

41

Other results (see paper)

• Agnostic Learning I: competes with the best in the
function class.

• Agnostic Learning II: competes with the best policy that
the dataset covers.

• Unknown behavior policy πD: behavior cloning.

• Improved sample complexity: set α = 0, requires stronger
concentration assumptions or asymptotics.

42

Concluding thoughts

Primal-dual formulation is the analog of ERM
for offline RL.

Remaining Questions:

• Optimal sample complexity in ϵ.

• Realizability wrt unregularized value function/density ratio in
non-asymptotic setting.

• Markov games.

43

Concluding thoughts

Primal-dual formulation is the analog of ERM
for offline RL.

Remaining Questions:

• Optimal sample complexity in ϵ.

• Realizability wrt unregularized value function/density ratio in
non-asymptotic setting.

• Markov games.

43

