
Proximal Newton-type methods for
minimizing composite functions

Jason D. Lee
Joint work with Yuekai Sun, Michael A. Saunders

Institute for Computational and Mathematical Engineering, Stanford University

June 12, 2014

Minimizing composite functions

Proximal Newton-type methods

Inexact search directions

Computational experiments

Minimizing composite functions

minimize
x

f (x) := g(x) + h(x)

I g and h are convex functions

I g is continuously differentiable, and its gradient ∇g is
Lipschitz continuous

I h is not necessarily everywhere differentiable, but its proximal
mapping can be evaluated efficiently

Minimizing composite functions: Examples

`1-regularized logistic regression:

min
w∈Rp

1

n

n∑
i=1

log(1 + exp(−yiwTxi)) + λ‖w‖1.

Sparse inverse covariance:

min
Θ
−logdet(Θ) + tr(SΘ) + λ‖Θ‖1

Minimizing composite functions: Examples

Graphical Model Structure Learning

min
θ
−
∑

(r,j)∈E

θrj(xr, xj) + logZ(θ) + λ
∑

(r,j)∈E

‖θrj‖F .

Multiclass Classification:

min
W

n∑
i=1

− log

(
ew

T
yi
xi∑

k e
wT

k xi

)
+ ‖W‖∗

Minimizing composite functions: Examples

Arbitrary convex program

min
x

g(x) + 1C(x)

Equivalent to solving
min
x∈C

g(x)

The proximal mapping

The proximal mapping of a convex function h is

proxh(x) = arg min
y

h(y) +
1

2
‖y − x‖22 .

I proxh(x) exists and is unique for all x ∈ domh

I proximal mappings generalize projections onto convex sets

Example: soft-thresholding: Let h(x) = ‖x‖1. Then

proxt‖·‖1(x) = sign(x) ·max{|x| − t, 0}.

The proximal gradient step

xk+1 = proxtkh (xk − tk∇g(xk))

= arg min
y

h(y) +
1

2tk
‖y − (xk − tk∇g(xk))‖2

= xk − tkGtkf (xk)

I Gtkf (xk) minimizes a simple quadratic model of f :

−tkGtkf (xk) = arg min
d

∇g(xk)
Td+

1

2tk
‖d‖22︸ ︷︷ ︸

simple quadratic

+h(xk+d).

I Gf (x) can be thought of as a generalized gradient of f(x).
Simplifies to the gradient descent on g(x) when h = 0.

The proximal gradient method

Algorithm 1 The proximal gradient method

Require: starting point x0 ∈ dom f
1: repeat
2: Compute a proximal gradient step:

Gtkf (xk) = 1
tk

(
xk − proxtkh(xk − tk∇g(xk))

)
.

3: Update: xk+1 ← xk − tkGtkf (xk).
4: until stopping conditions are satisfied.

Minimizing composite functions

Proximal Newton-type methods

Inexact search directions

Computational experiments

Proximal Newton-type methods

Main idea: use a local quadratic model (in lieu of a simple
quadratic model) to account for the curvature of g:

∆xk := arg min
d

∇g(xk)
Td+

1

2
dTHkd︸ ︷︷ ︸

local quadratic

+h(xk + d).

Solve the above subproblem and update

xk+1 = xk + tk∆xk.

A generic proximal Newton-type method

Algorithm 2 A generic proximal Newton-type method

Require: starting point x0 ∈ dom f
1: repeat
2: Choose an approximation to the Hessian Hk.
3: Solve the subproblem for a search direction:

∆xk ← arg mind∇g(xk)
Td+ 1

2d
THkd+ h(xk + d).

4: Select tk with a backtracking line search.
5: Update: xk+1 ← xk + tk∆xk.
6: until stopping conditions are satisfied.

Why are these proximal?

Definition (Scaled proximal mappings)

Let h be a convex function and H, a positive definite matrix. Then
the scaled proximal mapping of h at x is defined to be

proxHh (x) = arg min
y

h(y) +
1

2
‖y − x‖2H .

The proximal Newton update is

xk+1 = proxHk
h

(
xk −H−1

k ∇g(xk)
)

and analogous to the proximal gradient update

xk+1 = proxh/L

(
xk −

1

L
∇g(xk)

)
∆x = 0 if and only if x minimizes f = g + h.

A classical idea

Traces back to:

I Projected Newton-type methods

I Generalized proximal point methods

Popular methods tailored to specific problems:

I glmnet: lasso and elastic-net regularized generalized linear
models

I LIBLINEAR: `1-regularized logistic regression

I QUIC: sparse inverse covariance estimation

Choosing an approximation to the Hessian

1. Proximal Newton method: use Hessian ∇2g(xk)

2. Proximal quasi-Newton methods: build an approximation
to ∇2g(xk) using changes in ∇g:

Hk+1(xk+1 − xk) = ∇g(xk)−∇g(xk+1)

3. If problem is large, use limited memory versions of
quasi-Newton updates (e.g. L-BFGS)

4. Diagonal+rank 1 approximation to the Hessian.

Bottom line: Most strategies for choosing Hessian approximations
Newton-type methods also work for proximal Newton-type methods

Theoretical results

Take home message:

The convergence of proximal Newton methods parallel those
of the regular Newton Method.

Global convergence:

I smallest eigenvalue of Hk’s bounded away from zero

Quadratic convergence (prox-Newton method):

I Quadratic convergence: ‖xk − x?‖2 ≤ c2k or log log 1
ε

iterations to achieve ε accuracy.

I Assumptions: g is strongly convex, and ∇2g is Lipschitz
continuous

Superlinear convergence (prox-quasi-Newton methods):

I BFGS, SR1, and many other hessian approximations.

Dennis-More condition
‖(Hk−∇2g(x?))(xk+1−xk)‖

2
‖xk+1−xk‖2 → 0.

I Superlinear convergence means it is faster than any linear
rate. E.g. ck

2
converges superlinearly to 0.

Questions so far?

Any Questions?

Minimizing composite functions

Proximal Newton-type methods

Inexact search directions

Computational experiments

Solving the subproblem

∆xk = arg min
d

∇g(xk)
Td+

1

2
dTHkd+ h(xk + d)

= arg min
d

ĝk(xk + d) + h(xk + d)

Usually, we must use an iterative method to solve this subproblem.

I Use proximal gradient or coordinate descent on the
subproblem.

I A gradient/coordinate descent iteration on the subproblem is
much cheaper than a gradient iteration on the original
function f , since it does not require a pass over the data. By
solving the subproblem, we are more efficiently using a
gradient evaluation than gradient descent.

I Hk is commonly a L-BFGS approximation, so computing a
gradient takes O(Lp). A gradient of the original function
takes O(np). The subproblem is independent of n.

Inexact Newton-type methods

Main idea: no need to solve the subproblem exactly only need a
good enough search direction.

I We solve the subproblem approximately with an iterative
method, terminating (sometimes very) early

I number of iterations may increase, but computational expense
per iteration is smaller

I many practical implementations use inexact search directions

What makes a stopping condition good?

We should solve the subproblem more precisely when:

1. xk is close to x?, since Newton’s method converges
quadratically in this regime.

2. ĝk + h is a good approximation to f in the vicinity of xk
(meaning Hk has captured the curvature in g), since
minimizing the subproblem also minimizes f .

Early stopping conditions
For regular Newton’s method the most common stopping condition
is

‖∇ĝk(xk + ∆xk)‖ ≤ ηk ‖∇g(xk)‖ .

Analogously,∥∥G(ĝk+h)/M (xk + ∆xk)
∥∥︸ ︷︷ ︸

optimality of subproblem solution

≤ ηk
∥∥Gf/M (xk)

∥∥︸ ︷︷ ︸
optimality of xk

Choose ηk based on how well Gĝk+h approximates Gf :

ηk ∼
∥∥G(ĝk−1+h)/M (xk)−Gf/M (xk)

∥∥∥∥Gf/M (xk−1)
∥∥

Reflects the Intuition: solve the subproblem more precisely when

I Gf/M is small, so xk is close to optimum.

I Gĝ+h −Gf ≈ 0, means that Hk is accurately capturing the
curvature of g.

Convergence of the inexact prox-Newton method

I Inexact proximal Newton method converges superlinearly for
the previous choice of stopping criterion and ηk.

I In practice, the stopping criterion works extremely well. It
uses approximately the same number of iterations as solving
the subproblem exactly, but spends much less time on each
subproblem.

Minimizing composite functions

Proximal Newton-type methods

Inexact search directions

Computational experiments

Sparse inverse covariance (Graphical Lasso)

Sparse inverse covariance:

min
Θ
−logdet(Θ) + tr(SΘ) + λ‖Θ‖1

I S is a sample covariance, and estimates Σ the population
covariance.

S =

p∑
i=1

(xi − µ)(xi − µ)T

I S is not of full rank since n < p, so S−1 doesn’t exist.

I Graphical lasso is a good estimator of Σ−1

Sparse inverse covariance estimation

Figure: Proximal BFGS method with three subproblem stopping
conditions (Estrogen dataset p = 682)

0 5 10 15 20 25
10

−6

10
−4

10
−2

10
0

Function evaluations

R
el

at
iv

e
su

bo
pt

im
al

ity

adaptive
maxIter = 10
exact

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Time (sec)

R
el

at
iv

e
su

bo
pt

im
al

ity

adaptive
maxIter = 10
exact

Sparse inverse covariance estimation

Figure: Leukemia dataset p = 1255

0 5 10 15 20 25
10

−6

10
−4

10
−2

10
0

Function evaluations

R
el

at
iv

e
su

bo
pt

im
al

ity

adaptive
maxIter = 10
exact

0 50 100
10

−6

10
−4

10
−2

10
0

Time (sec)

R
el

at
iv

e
su

bo
pt

im
al

ity

adaptive
maxIter = 10
exact

Another example

Sparse logistic regression

I training data: x(1), . . . , x(n) with labels y(1), . . . , y(n) ∈ {0, 1}
I We fit a sparse logistic model to this data:

minimize
w

1

n

n∑
i=1

− log(1 + exp(−yiwTxi)) + λ ‖w‖1

Sparse logistic regression

Figure: Proximal L-BFGS method vs. FISTA and SpaRSA (gisette
dataset, n = 5000, p = 6000 and dense)

0 1000 2000 3000 4000 5000
10

−6

10
−4

10
−2

10
0

Function evaluations

R
el

at
iv

e
su

bo
pt

im
al

ity

FISTA
SpaRSA
PN

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

Time (sec)

R
el

at
iv

e
su

bo
pt

im
al

ity

FISTA
SpaRSA
PN

Sparse logistic regression

Figure: rcv1 dataset, n = 47, 000, p = 542, 000 and 40 million nonzeros

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

Function evaluations

R
el

at
iv

e
su

bo
pt

im
al

ity

FISTA
SpaRSA
PN

0 50 100 150 200 250
10

−6

10
−4

10
−2

10
0

Time (sec)

R
el

at
iv

e
su

bo
pt

im
al

ity

FISTA
SpaRSA
PN

Markov random field structure learning

minimize
θ

−
∑

(r,j)∈E

θrj(xr, xj) + logZ(θ)

+
∑

(r,j)∈E

(
λ1‖θrj‖2 + λF ‖θrj‖2F

)
.

Figure: Markov random field structure learning

0 100 200 300

10
−5

10
0

Iteration

lo
g(

f−
f*

)

Fista
AT
PN100
PN15
SpaRSA

0 20 40 60 80

10
−5

10
0

Time (sec)

lo
g(

f−
f*

)

Fista
AT
PN100
PN15
SpaRSA

Summary

Proximal Newton-type methods

I converge rapidly near the optimal solution, and can produce a
solution of high accuracy

I are insensitive to the choice of coordinate system and to the
condition number of the level sets of the objective

I are suited to problems where g, ∇g is expensive to evaluate
compared to h, proxh. This is the case when g(x) is a loss
function and computing the gradient requires a pass over the
data.

I “more efficiently uses” a gradient evaluation of g(x).

Thank you for your attention. Any questions?

	Minimizing composite functions
	Proximal Newton-type methods
	Inexact search directions
	Computational experiments

