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Minimizing composite functions

minimize
x

f (x) := g(x) + h(x)

I g and h are convex functions

I g is continuously differentiable, and its gradient ∇g is
Lipschitz continuous

I h is not necessarily everywhere differentiable, but its proximal
mapping can be evaluated efficiently



Minimizing composite functions: Examples

`1-regularized logistic regression:

min
w∈Rp

1

n

n∑
i=1

log(1 + exp(−yiwTxi)) + λ‖w‖1.

Sparse inverse covariance:

min
Θ
−logdet(Θ) + tr(SΘ) + λ‖Θ‖1



Minimizing composite functions: Examples

Graphical Model Structure Learning

min
θ
−
∑

(r,j)∈E

θrj(xr, xj) + logZ(θ) + λ
∑

(r,j)∈E

‖θrj‖F .

Multiclass Classification:

min
W

n∑
i=1

− log

(
ew

T
yi
xi∑

k e
wT

k xi

)
+ ‖W‖∗



Minimizing composite functions: Examples

Arbitrary convex program

min
x

g(x) + 1C(x)

Equivalent to solving
min
x∈C

g(x)



The proximal mapping

The proximal mapping of a convex function h is

proxh(x) = arg min
y

h(y) +
1

2
‖y − x‖22 .

I proxh(x) exists and is unique for all x ∈ domh

I proximal mappings generalize projections onto convex sets

Example: soft-thresholding: Let h(x) = ‖x‖1. Then

proxt‖·‖1(x) = sign(x) ·max{|x| − t, 0}.



The proximal gradient step

xk+1 = proxtkh (xk − tk∇g(xk))

= arg min
y

h(y) +
1

2tk
‖y − (xk − tk∇g(xk))‖2

= xk − tkGtkf (xk)

I Gtkf (xk) minimizes a simple quadratic model of f :

−tkGtkf (xk) = arg min
d

∇g(xk)
Td+

1

2tk
‖d‖22︸ ︷︷ ︸

simple quadratic

+h(xk+d).

I Gf (x) can be thought of as a generalized gradient of f(x).
Simplifies to the gradient descent on g(x) when h = 0.



The proximal gradient method

Algorithm 1 The proximal gradient method

Require: starting point x0 ∈ dom f
1: repeat
2: Compute a proximal gradient step:

Gtkf (xk) = 1
tk

(
xk − proxtkh(xk − tk∇g(xk))

)
.

3: Update: xk+1 ← xk − tkGtkf (xk).
4: until stopping conditions are satisfied.
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Proximal Newton-type methods

Main idea: use a local quadratic model (in lieu of a simple
quadratic model) to account for the curvature of g:

∆xk := arg min
d

∇g(xk)
Td+

1

2
dTHkd︸ ︷︷ ︸

local quadratic

+h(xk + d).

Solve the above subproblem and update

xk+1 = xk + tk∆xk.



A generic proximal Newton-type method

Algorithm 2 A generic proximal Newton-type method

Require: starting point x0 ∈ dom f
1: repeat
2: Choose an approximation to the Hessian Hk.
3: Solve the subproblem for a search direction:

∆xk ← arg mind∇g(xk)
Td+ 1

2d
THkd+ h(xk + d).

4: Select tk with a backtracking line search.
5: Update: xk+1 ← xk + tk∆xk.
6: until stopping conditions are satisfied.



Why are these proximal?

Definition (Scaled proximal mappings)

Let h be a convex function and H, a positive definite matrix. Then
the scaled proximal mapping of h at x is defined to be

proxHh (x) = arg min
y

h(y) +
1

2
‖y − x‖2H .

The proximal Newton update is

xk+1 = proxHk
h

(
xk −H−1

k ∇g(xk)
)

and analogous to the proximal gradient update

xk+1 = proxh/L

(
xk −

1

L
∇g(xk)

)
∆x = 0 if and only if x minimizes f = g + h.



A classical idea

Traces back to:

I Projected Newton-type methods

I Generalized proximal point methods

Popular methods tailored to specific problems:

I glmnet: lasso and elastic-net regularized generalized linear
models

I LIBLINEAR: `1-regularized logistic regression

I QUIC: sparse inverse covariance estimation



Choosing an approximation to the Hessian

1. Proximal Newton method: use Hessian ∇2g(xk)

2. Proximal quasi-Newton methods: build an approximation
to ∇2g(xk) using changes in ∇g:

Hk+1(xk+1 − xk) = ∇g(xk)−∇g(xk+1)

3. If problem is large, use limited memory versions of
quasi-Newton updates (e.g. L-BFGS)

4. Diagonal+rank 1 approximation to the Hessian.

Bottom line: Most strategies for choosing Hessian approximations
Newton-type methods also work for proximal Newton-type methods



Theoretical results

Take home message:

The convergence of proximal Newton methods parallel those
of the regular Newton Method.

Global convergence:

I smallest eigenvalue of Hk’s bounded away from zero

Quadratic convergence (prox-Newton method):

I Quadratic convergence: ‖xk − x?‖2 ≤ c2k or log log 1
ε

iterations to achieve ε accuracy.

I Assumptions: g is strongly convex, and ∇2g is Lipschitz
continuous

Superlinear convergence (prox-quasi-Newton methods):

I BFGS, SR1, and many other hessian approximations.

Dennis-More condition
‖(Hk−∇2g(x?))(xk+1−xk)‖

2
‖xk+1−xk‖2 → 0.

I Superlinear convergence means it is faster than any linear
rate. E.g. ck

2
converges superlinearly to 0.



Questions so far?

Any Questions?
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Solving the subproblem

∆xk = arg min
d

∇g(xk)
Td+

1

2
dTHkd+ h(xk + d)

= arg min
d

ĝk(xk + d) + h(xk + d)

Usually, we must use an iterative method to solve this subproblem.

I Use proximal gradient or coordinate descent on the
subproblem.

I A gradient/coordinate descent iteration on the subproblem is
much cheaper than a gradient iteration on the original
function f , since it does not require a pass over the data. By
solving the subproblem, we are more efficiently using a
gradient evaluation than gradient descent.

I Hk is commonly a L-BFGS approximation, so computing a
gradient takes O(Lp). A gradient of the original function
takes O(np). The subproblem is independent of n.



Inexact Newton-type methods

Main idea: no need to solve the subproblem exactly only need a
good enough search direction.

I We solve the subproblem approximately with an iterative
method, terminating (sometimes very) early

I number of iterations may increase, but computational expense
per iteration is smaller

I many practical implementations use inexact search directions



What makes a stopping condition good?

We should solve the subproblem more precisely when:

1. xk is close to x?, since Newton’s method converges
quadratically in this regime.

2. ĝk + h is a good approximation to f in the vicinity of xk
(meaning Hk has captured the curvature in g), since
minimizing the subproblem also minimizes f .



Early stopping conditions
For regular Newton’s method the most common stopping condition
is

‖∇ĝk(xk + ∆xk)‖ ≤ ηk ‖∇g(xk)‖ .

Analogously,∥∥G(ĝk+h)/M (xk + ∆xk)
∥∥︸ ︷︷ ︸

optimality of subproblem solution

≤ ηk
∥∥Gf/M (xk)

∥∥︸ ︷︷ ︸
optimality of xk

Choose ηk based on how well Gĝk+h approximates Gf :

ηk ∼
∥∥G(ĝk−1+h)/M (xk)−Gf/M (xk)

∥∥∥∥Gf/M (xk−1)
∥∥

Reflects the Intuition: solve the subproblem more precisely when

I Gf/M is small, so xk is close to optimum.

I Gĝ+h −Gf ≈ 0, means that Hk is accurately capturing the
curvature of g.



Convergence of the inexact prox-Newton method

I Inexact proximal Newton method converges superlinearly for
the previous choice of stopping criterion and ηk.

I In practice, the stopping criterion works extremely well. It
uses approximately the same number of iterations as solving
the subproblem exactly, but spends much less time on each
subproblem.
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Sparse inverse covariance (Graphical Lasso)

Sparse inverse covariance:

min
Θ
−logdet(Θ) + tr(SΘ) + λ‖Θ‖1

I S is a sample covariance, and estimates Σ the population
covariance.

S =

p∑
i=1

(xi − µ)(xi − µ)T

I S is not of full rank since n < p, so S−1 doesn’t exist.

I Graphical lasso is a good estimator of Σ−1



Sparse inverse covariance estimation

Figure: Proximal BFGS method with three subproblem stopping
conditions (Estrogen dataset p = 682)
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Sparse inverse covariance estimation

Figure: Leukemia dataset p = 1255
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Another example

Sparse logistic regression

I training data: x(1), . . . , x(n) with labels y(1), . . . , y(n) ∈ {0, 1}
I We fit a sparse logistic model to this data:

minimize
w

1

n

n∑
i=1

− log(1 + exp(−yiwTxi)) + λ ‖w‖1



Sparse logistic regression

Figure: Proximal L-BFGS method vs. FISTA and SpaRSA (gisette
dataset, n = 5000, p = 6000 and dense)
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Sparse logistic regression

Figure: rcv1 dataset, n = 47, 000, p = 542, 000 and 40 million nonzeros
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Markov random field structure learning

minimize
θ

−
∑

(r,j)∈E

θrj(xr, xj) + logZ(θ)

+
∑

(r,j)∈E

(
λ1‖θrj‖2 + λF ‖θrj‖2F

)
.

Figure: Markov random field structure learning
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Summary

Proximal Newton-type methods

I converge rapidly near the optimal solution, and can produce a
solution of high accuracy

I are insensitive to the choice of coordinate system and to the
condition number of the level sets of the objective

I are suited to problems where g, ∇g is expensive to evaluate
compared to h, proxh. This is the case when g(x) is a loss
function and computing the gradient requires a pass over the
data.

I “more efficiently uses” a gradient evaluation of g(x).

Thank you for your attention. Any questions?
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