
Survey of Overparametrization and Optimization

Jason D. Lee

University of Southern California

September 25, 2019

Jason Lee

1 Overparametrization and Architecture Design

2 Geometric Results on Overparametrization
Review Non-convex Optimization
Non-Algorithmic Results

3 Algorithmic Results
Gradient Dynamics: NTK

4 Limitations
Jason Lee

Today’s Tutorial

Survey of Optimization and Overparametrization in Deep Learning.

Can think of this tutorial more as a survey of the literature
with my own perspectives and opinions.

Jason Lee

1 Overparametrization and Architecture Design

2 Geometric Results on Overparametrization
Review Non-convex Optimization
Non-Algorithmic Results

3 Algorithmic Results
Gradient Dynamics: NTK

4 Limitations

Jason Lee

Theoretical Challenges: Two Major Hurdles

1 Optimization

Non-convex and non-smooth with exponentially many critical
points.

2 Statistical

Successful Deep Networks are huge with more parameters than
samples (overparametrization).

Two Challenges are Intertwined

Learning = Optimization Error + Statistical Error.
But Optimization and Statistics Cannot Be Decoupled.

The choice of optimization algorithm affects the statistical
performance (generalization error).

Improving statistical performance (e.g. using regularizers,
dropout . . .) changes the algorithm dynamics and landscape.

Jason Lee

Theoretical Challenges: Two Major Hurdles

1 Optimization

Non-convex and non-smooth with exponentially many critical
points.

2 Statistical

Successful Deep Networks are huge with more parameters than
samples (overparametrization).

Two Challenges are Intertwined

Learning = Optimization Error + Statistical Error.
But Optimization and Statistics Cannot Be Decoupled.

The choice of optimization algorithm affects the statistical
performance (generalization error).

Improving statistical performance (e.g. using regularizers,
dropout . . .) changes the algorithm dynamics and landscape.

Jason Lee

Non-convexity

Practical observation: Gradient methods find high quality
solutions.

Theoretical Side: Exponentially many local minima in square
loss in simple architecture (one neuron with sigmoid
activation) [Auer-Herbster-Warmuth].

Many other hardness based on intersection of halfspaces for
realizable models with positive margin [Klivans-Sherstov,
Livni-Shalev-Shwartz-Shamir, Neyshabur-Tomioka-Srebro]

Question

Why is (stochastic) gradient descent (GD) successful? Or is it just
“alchemy”?

Jason Lee

Non-convexity

Practical observation: Gradient methods find high quality
solutions.

Theoretical Side: Exponentially many local minima in square
loss in simple architecture (one neuron with sigmoid
activation) [Auer-Herbster-Warmuth].

Many other hardness based on intersection of halfspaces for
realizable models with positive margin [Klivans-Sherstov,
Livni-Shalev-Shwartz-Shamir, Neyshabur-Tomioka-Srebro]

Question

Why is (stochastic) gradient descent (GD) successful? Or is it just
“alchemy”?

Jason Lee

Non-convexity

Practical observation: Gradient methods find high quality
solutions.

Theoretical Side: Exponentially many local minima in square
loss in simple architecture (one neuron with sigmoid
activation) [Auer-Herbster-Warmuth].

Many other hardness based on intersection of halfspaces for
realizable models with positive margin [Klivans-Sherstov,
Livni-Shalev-Shwartz-Shamir, Neyshabur-Tomioka-Srebro]

Question

Why is (stochastic) gradient descent (GD) successful? Or is it just
“alchemy”?

Jason Lee

Setting

Loss

Ln(θ) =
∑
i

`(fθ(xi), yi) +R(θ),

1 fθ(x) is the prediction function (neural network)

2 `(ŷ, y) = 1
2(ŷ − y)2 or `(ŷ, y) = log(1 + exp(−ŷy)).

Algorithm

Gradient Descent algorithm:

θk+1 = θk − ηk∇Ln(θ).

Stochastic Gradient:

θk+1 = θk − ηk∇θ`(fθ(xi), y).

Jason Lee

Notation

All parameters is θ. Weights of individual layers are Wl and
output layer weights is a.

Input dimension x ∈ Rd, width of network is denoted m, and
depth L.

Total number of parameters θ ∈ Rp and sample size n.

Jason Lee

1 Overparametrization and Architecture Design

2 Geometric Results on Overparametrization
Review Non-convex Optimization
Non-Algorithmic Results

3 Algorithmic Results
Gradient Dynamics: NTK

4 Limitations
Jason Lee

Architecture Design

Designing the Architecture

Goal: Design the architecture so that gradient decent finds good
solutions (e.g. no spurious local minimizers)a.

aLivni et al.

Figure: SGD succeeds on the right loss function, but fails on the left in
finding global minima.

Jason Lee

Architecture Design: Overparametrization

Empirical Observation: Easier for SGD to optimize larger
architectures

Jason Lee

Practical Landscape Design - Overparametrization

Iterations ×104

1 2 3 4 5

O
bj

ec
tiv

e
V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2 2.5 3

Iterations 10
4

0

0.1

0.2

0.3

0.4

0.5

O
b
je

c
ti
v
e
 V

a
lu

e

Figure: Experiment first done by Livni-Shalev-Shwartz-Shamir 2014

Jason Lee

Overparametrization

Conventional Wisdom on Overparametrization

If SGD is not finding a low training error solution, then fit a more
expressive model until the training error is near zero.

Problem

How much over-parametrization do we need to efficiently optimize
+ generalize?

Adding parameters increases computational and memory cost.

Too many parameters may lead to overfitting (???).

Jason Lee

How much Overparametrization to Optimize?

Motivating Question

How much overparametrization ensures success of SGD?

For arbitrary labels, p� n is necessary, where p is the number
of parameters.

Can the amount of overparametrization adapt to latent
structure in the labels?

Jason Lee

Taxonomy of Overparametrization

Geometry-based: All local minima are global, All strict local
minima are global.

Local Dynamics (Lazy/ Kernel Regime): Utilize local linear
behavior of the network predictions.

Global Dynamics (Active training, Mean Field): characterized
by large changes in the parameter.

Jason Lee

Architecture Design: Skip Connections

Skip connections/Resnet avoids gradient vanishing due to
depth.

Jason Lee

1 Overparametrization and Architecture Design

2 Geometric Results on Overparametrization
Review Non-convex Optimization
Non-Algorithmic Results

3 Algorithmic Results
Gradient Dynamics: NTK

4 Limitations
Jason Lee

Overview of Geometric Results

Decompose into two steps:

Gradient-based algorithms find first-order stationary points or
second-order stationary points (Pemantle 92, Ge et al. 15, Lee
et al. 16, Jin et al. 17)

Establish that all first-order/ second-order stationary points
(or local minima) are global minimizers.

Jason Lee

One-point convexity

Gradient methods can converge even when the function is
non-convex.

Quasi-convex

∇L(θ)>(θ − θ?) ≥ d(θ, θ?),

where d is some distance measure to optimality.

d(θ, θ?) = L(θ)− L(θ?), Quasi convex.

d(θ, θ?) = η‖θ − θ?‖2 + β‖∇L(θ)‖2 , regularity condition or
correlation condition.

Jason Lee

Single Neuron/Filter and Local Results

One-point convex

Single neuron/filter models have an even stronger property (with
distribution assumptions on x):

∇θL(θ)>(θ − θ?) > 0.

y = σ(w>x) (Candes et al., Kalai et al., Kakade et al., Mei et
al., Soltanolkotabi, Goel et al.)

Single filter: y =
∑

j σ((Sjw)>x) (Brutzkus and Globerson,
Du et al., Goel et al.)

If W ? ≈ I , then two-layer ReLU network is one-point convex
in a small region around W ? (Li and Yuan, Zhong et al.).
Resnets have a large basin of attraction around identity.

Linear Dynamical System (Hardt et al.)

Jason Lee

Polyak Condition

In over-parametrized models, we frequently do not know what θ? is
because it is non-identifiable.

Polyak Gradient Domination

‖∇L(θ)‖ ≥ L(θ)− L(θ?).

Local convergence for over-parametrized models (SJL18)

Global convergence for over-parametrized models (DZPS18,
DLLWZ18)

Linear residual networks (Hardt and Ma) satisfy Polyak
condition in a large region around initialization.

Jason Lee

Gradient Vanishing

The key is to avoid spurious gradient vanishing.

What to do if the gradient is zero?

L(θ) = L(θ0) +∇L(θ0)>(θ − θ0)︸ ︷︷ ︸
=0

+
1

2
(θ − θ0)∇2L(θ0)(θ − θ0)

Try to find a direction θ− θ0 so that (θ− θ0)∇2L(θ0)(θ− θ0) < 0.

Jason Lee

Gradient Vanishing

The key is to avoid spurious gradient vanishing.

What to do if the gradient is zero?

L(θ) = L(θ0) +∇L(θ0)>(θ − θ0)︸ ︷︷ ︸
=0

+
1

2
(θ − θ0)∇2L(θ0)(θ − θ0)

Try to find a direction θ− θ0 so that (θ− θ0)∇2L(θ0)(θ− θ0) < 0.

Jason Lee

Algorithms that Avoid Strict Saddle

Using second-order information, it is easy to find SOSP:

Algorithm 1 Second-Order Method (Royer and Wright)

for k = 0, 1, 2, . . . do
Step 1. (First-Order)
if ‖∇L(θk‖ ≤ εg then

Go to Step 2;
else

Set dk = −∇L(θk). θk+1 = θk + ηdk
end if
Step 2. (Second-Order) Compute eigenpair (vk, λk) where λk =
λmin(∇2L(θk)) and v>k ∇L(θk) ≤ 0.
if ‖∇L(θk)‖ ≤ εg and λk ≥ −εH then

Terminate;
else if λk < −εH then

(Negative Curvature) Set dk = vk; Set θk+1 = θk + ηdk.
end if

end for

Jason Lee

Where will the second-order algorithm terminate?

Second-order algorithm makes progress until both of the following
hold:

1 ∇L(θ) = 0

2 ∇2L(θ) � 0.

If any of these two conditions are violated, then the algorithm can
still make progress. Thus if θ satisfies above two conditions, then
we call it second-order stationary.

Jason Lee

Strict Saddle aka Second-order Stationary Point

A critical point θ∗ is second order stationary point (SOSP) if

1 ∇L(θ∗) = 0,

2 ∇2L(θ∗) � 0.

SOSP ≈ local minimum

Jason Lee

Detour: Higher-order saddles

There is an obvious generalization to escaping higher-order saddles
that requires computing negative eigenvalues of higher-order
tensors.

Third-order saddles can be escaped (Anandkumar and Ge
2016)

NP-hard to escape 4th order saddles.

Neural nets of depth L will generally have saddles of order L.

Escaping second-order stationary points in manifold
constrained optimization is the same difficulty as
unconstrained. Escaping second-order stationary points in
constrained optimization is NP-hard (copositivity testing).

Jason Lee

How about Gradient Methods?

Can gradient methods with no access to Hessian avoid
saddle-points?

Typically, algorithms only use gradient access.

Naively, you may think if gradient vanishes then the algorithm
cannot escape since it cannot “access” second-order
information.

Randomness

The above intuition may hold without randomness, but imagine
that θ0 = 0 and ∇L(θ) = 0. We run GD from a small perturbation
of 0:

θt+1 = (I − ηH)tZ.

GD can see second-order information when near saddle-points.

Jason Lee

How about Gradient Methods?

Can gradient methods with no access to Hessian avoid
saddle-points?

Typically, algorithms only use gradient access.

Naively, you may think if gradient vanishes then the algorithm
cannot escape since it cannot “access” second-order
information.

Randomness

The above intuition may hold without randomness, but imagine
that θ0 = 0 and ∇L(θ) = 0. We run GD from a small perturbation
of 0:

θt+1 = (I − ηH)tZ.

GD can see second-order information when near saddle-points.

Jason Lee

How about Gradient Methods?

Gradient flow diverges from (0, 0) unless
initialized on y = −x.

This picture completely generalizes to general non-convex
functions.

Jason Lee

More Intuition

Gradient Descent near a saddle-point is power iteration:

f(x) =
1

2
xTHx

xk = (I − ηH)kx0

Converges to the saddle point 0 iff x0 is in the span of the
positive eigenvectors.

As long as there is one negative eigenvector, this set is
measure 0.

Thus for indefinite quadratics, the set of initial conditions that
converge to a saddle is measure 0.

Jason Lee

More Intuition

Gradient Descent near a saddle-point is power iteration:

f(x) =
1

2
xTHx

xk = (I − ηH)kx0

Converges to the saddle point 0 iff x0 is in the span of the
positive eigenvectors.

As long as there is one negative eigenvector, this set is
measure 0.

Thus for indefinite quadratics, the set of initial conditions that
converge to a saddle is measure 0.

Jason Lee

Avoiding Saddle-points

Theorem (Pemantle 92, Ge et al. 2015, Lee et al. 2016)

Assume the function f is smooth and coercive
(lim‖x‖→∞ ‖∇f(x)‖ =∞) , then Gradient Descent with noise
finds a point with

‖∇f(x)‖ < εg

λmin(∇2f(x)) � −εHI,

in poly(1/εg, 1/εH , d) steps.
Gradient descent with random initialization asymptotically finds a
SOSP.

Gradient-based algorithms find SOSP.

Jason Lee

SOSP

We only need a) gradient non-vanishing or b) Hessian
non-negative, so strictly larger set of problems than before.

Jason Lee

Why are SOSP interesting?

All SOSP are global minimizers and SGD/GD find the global min:

1 Matrix Completion (GLM16, GJZ17,. . .)

2 Rank k Approximation (classical)

3 Matrix Sensing (BNS16)

4 Phase Retrieval (SQW16)

5 Orthogonal Tensor Decomposition (AGHKT12,GHJY15)

6 Dictionary Learning (SQW15)

7 Max-cut via Burer Monteiro (BBV16, Montanari 16)

8 Overparametrized Networks with Quadratic Activation (DL18)

9 ReLU network with two neurons (LWL17)

10 ReLU networks via landscape design (GLM18)

Jason Lee

What neural net are strict saddle?

Quadratic Activation (Du-Lee, Journee et al., Soltanolkotabi et al.)

f(W ;x) =

m∑
j=1

aj(w
>
j x)2

with over-parametrization (m & min(
√
n, d)) and any standard

loss.

Jason Lee

What neural net are strict saddle?

ReLU activation

f∗(x) =

k∑
j=1

σ(w∗>j x)

Tons of assumptions:

1 Gaussian x

2 no negative output weights

3 k ≤ d
Loss function with strict saddle is complicated. Essentially the loss
encodes tensor decomposition.

Jason Lee

More strict saddle

Two-neuron with orthogonal weights (Luo et al.) proved using
extraordinarily painful trigonometry.

One convolutional filter with non-overlapping patches
(Brutzkus and Globerson).

Jason Lee

1 Overparametrization and Architecture Design

2 Geometric Results on Overparametrization
Review Non-convex Optimization
Non-Algorithmic Results

3 Algorithmic Results
Gradient Dynamics: NTK

4 Limitations
Jason Lee

Non-linear Least Squares (NNLS) Perspective

Folklore

Optimization is “easy” when parameters > sample size.

View the loss as a NNLS:

n∑
i=1

(fi(θ)− yi)2 and fi(θ) = fθ(xi) = prediction with param θ

Jason Lee

Stationary Points of NNLS

Jacobian J ∈ Rp×n has columns ∇θfi(θ).

Let the error ri = fi(θ)− yi.
The stationarity condition is

J(θ)r(θ) = 0.

J is a tall matrix when over-parametrized, so at “most”
points σmin(J) > 0.

Jason Lee

NNLS continued

Imagine that magically you found a critical point with
σmin(J) > 0.
Then

‖J(θ)r(θ)‖ ≤ ε =⇒ ‖r(θ)‖ ≤ ε

σmin(J)
,

and thus globally optimal!
Takeaway: If you can find a critical point (which GD/SGD

do) and ensure J is full rank, then it is a global optimum.

Jason Lee

Other losses

Other losses

Consider ∑
i

`(fi(x), yi).

Critcial points have the form

J(θ)r(θ) = 0 and ri = `′(fi(θ), yi).

and so
‖r(θ)‖ ≤ ε

σmin(J)
.

For almost all commonly used losses, `(z) . `′(z) including
cross-entropy.

Jason Lee

NNLS (continued)

Question

How to find non-degenerate critical points????

Short answer*: No one knows.

Nuanced answer: For almost all θ, J(θ) is full rank when
over-parametrized. Thus “almost all” critical points are global
minima.

Jason Lee

NNLS (continued)

Question

How to find non-degenerate critical points????

Short answer*: No one knows.

Nuanced answer: For almost all θ, J(θ) is full rank when
over-parametrized. Thus “almost all” critical points are global
minima.

Jason Lee

NNLS (continued)

Question

How to find non-degenerate critical points????

Short answer*: No one knows.

Nuanced answer: For almost all θ, J(θ) is full rank when
over-parametrized. Thus “almost all” critical points are global
minima.

Jason Lee

Several Attempts

Strategy 1: Auxiliary randomness ω , so that J(θ, ω) is full
rank even when θ depends on the data (Soudry-Carmon).
The guarantees suggest that SGD with auxilary randomness
can find a global minimum.

Strategy 2: Pretend it is independent (Kawaguchi)

Strategy 3: Punt on the dependence. Theorems say “Almost
all critical points are global” (Nguyen and Hein, Nouiehed and
Razaviyayn)

Jason Lee

Geometric Viewpoint

Question

What do these results have in common?

Our goal is to minimize L(f) = ‖f − y‖2.

Imagine that you are at f0 which is non optimal. Due to
convexity, −(f − y) is a first-order descent direction.

Parameter space is fθ(x), so let’s say fθ0 = f0. For θ to
“mimick” the descent direction, we need

Jf (θ0)(θ − θ0) = y − f.

Jason Lee

Inverse Function Theorem (Informal)

What if Jf is zero? Then we can try to solve
∇2f(θ0)[(θ− θ0)⊗2] = −(f − y). This will give a second-order
descent direction, and allow us to escape all SOSP.

And so forth: If we can solve ∇kf(θ0)[(θ − θ0)⊗k] = y − f ,
this will allow us to escape a kth order saddle.

Since we do not know y − f , we just compute the minimal
eigenvector to find such a direction.

Jason Lee

Non-Algorithmic No Spurious Local Minima

No Spurious Local Minima (Nouihed and Razaviyayn)

Fundamentally, if the map f(Bθ0) is locally onto, then there
exists an escape direction.

This does not mean you can efficiently find the direction (e.g. 4th
order and above). Contrast this to the strict saddle definition.

Jason Lee

Relation to overparametrization (Informal):

y ∈ Rn, so we need at least dim(θ) = p ≥ n.

Imagine if you had a two-layer net f(x) = a>σ(Wx), and the
hidden layer is super wide m ≥ n. Then as long as W is full
rank, can only treat a as the variable and solve
∇af(a0,W0)[a− a0, 0] = y − f .
Thus if W is fixed, all critical points in a are global minima.

Now imagine that W is also a variable. The only potential
issue is if σ(WX) is a rank degenerate matrix.

Thus imagine that if (a,W) is a local minimum, where the
error is not zero. We can make an infinitesmal perturbation to
W to make it full rank. Then a perturbation to a to move in
the direction of y − f to escape. Thus there are no spurious
local minima.

Papers that are of this “flavor”: Poston et al. , Yu, Nguyen and
Hein, Nouiehed and Razaviyayn, Haeffele and Vidal, Venturi et al..

Jason Lee

Theorem (First form)

Assume that f(x) = WLσ(WL−1 . . .W1x). There is a layer with
width ml > n and ml ≥ ml+1 ≥ ml+2 ≥ . . . ≥ mL.
Then almost all local minimizers are global.

Theorem (Second form)

Similar assumptions as above.
There exists a path with non-increasing loss value from every
parameter θ to a global min θ?. This implies that every strict local
minimizer is a global min.

Generally require you to have m ≥ n (at least one layer that is
very wide).

Non-algorithmic and do not have any implications for SGD
finding a global minimum (higher-order saddles etc.)

Jason Lee

Connection to Frank-Wolfe

In Frank-Wolfe or Gradient Boosting, the goal is to find a search
direction that is correlated with the residual.
The direction we want to go in is fi(θ)− yi. If the weak classifier
is a single neuron, then a two-layer classifier is the boosted version
(same as Barron’s greedy algorithm):

f(x) =

m∑
j=1

aj σ(w>j x)︸ ︷︷ ︸
weak classifier

.

At every step try to find:

σ(w>xi) = fi(θ)− yi.

Jason Lee

Similar to GD

Frank-Wolfe basically introduces a neuron at zero and does a local
search step on the parameter.
Has the same issues:

If σ(w>x) can make first-order progress (meaning strictly
positively correlated with f − y), then GD will find this.

Otherwise need to find a direction of higher-order correlation
with f − y, and this is likely hard.

Notable exceptions: quadratic activation requires eigenvector
(Livni et al.) and monomial activation requires tensor
eigenvalue.

Jason Lee

1 Overparametrization and Architecture Design

2 Geometric Results on Overparametrization
Review Non-convex Optimization
Non-Algorithmic Results

3 Algorithmic Results
Gradient Dynamics: NTK

4 Limitations
Jason Lee

How to get Algorithmic result?

Most NN are not strict saddle, and the “all local are global” style
results have no algorithmic implications.
What are the few cases we do have algorithmic results?

Optimizing a single layer (Random Features).

Local results (Polyak condition).

Let’s try to use these two building blocks to get algorithmic results.

Jason Lee

How to get Algorithmic result?

Most NN are not strict saddle, and the “all local are global” style
results have no algorithmic implications.
What are the few cases we do have algorithmic results?

Optimizing a single layer (Random Features).

Local results (Polyak condition).

Let’s try to use these two building blocks to get algorithmic results.

Jason Lee

Random Features Review

Consider functions of the form

f(x) =

∫
φ(x; θ)c(θ)dω(θ), sup

θ
c(θ) <∞

Rahimi and Recht showed that this induces an RKHS with kernel

Kφ(x, x′) = Eω[φ(x; θ)>φ(x′; θ)].

Jason Lee

Relation to Neural Nets (Warm-up)

Two-layer Net

fθ(x) =
∑m

j=1 ajσ(w>j x), and imagine if m→∞.

Define the measure c
(

wj
‖wj‖

)
∝ |aj |‖wj‖2, then

fc(x) =

∫
φ(x; θ)c(θ)dω(θ).

If m is large enough, any function of the form
f(x) =

∫
φ(x; θ)c(θ)dω(θ) can be approximated by a two-layer

network.

Jason Lee

Random Features

Theorem

Let f =
∫
φ(x; θ)c(θ)dω(θ), then there is a function of the form

f̂(x) =
∑m

j=1 ajφ(x; θj),

‖f̂ − f‖ . ‖c‖∞√
m
.

span({φ(·, θj)}) is dense in H(Kφ)

Jason Lee

Function classes Learnable via SGD

Proof Strategy (Andoni et al., Daniely):

1 Assume the target f? ∈ H(Kφ) or approximable by H(Kφ)
up to tolerance.

2 Show that SGD learns something as competitive as the best in
H(Kφ).

Jason Lee

Function classes Learnable via SGD

Proof Strategy (Andoni et al., Daniely):

1 Assume the target f? ∈ H(Kφ) or approximable by H(Kφ)
up to tolerance.

2 Show that SGD learns something as competitive as the best in
H(Kφ).

Jason Lee

Function classes Learnable via SGD

Proof Strategy (Andoni et al., Daniely):

1 Assume the target f? ∈ H(Kφ) or approximable by H(Kφ)
up to tolerance.

2 Show that SGD learns something as competitive as the best in
H(Kφ).

Jason Lee

Step 1

1 Write K(x, y) = g(ρ) =
∑
ciρ

i.

2 Thus φ(x)i =
√
cix

i is a feature map.

3 Using this, we can write p(x) =
∑
pjx

j = 〈w, φ(x)〉 for
wj = pj/

√
cj .

4 Thus if cj decay quickly, then ‖w‖2 won’t be too huge. RKHS
norm and sample complexity is governed by ‖w‖2.

Conclusion: Polynomials and some other simple functions are in
the RKHS.

Jason Lee

Step 1

1 Write K(x, y) = g(ρ) =
∑
ciρ

i.

2 Thus φ(x)i =
√
cix

i is a feature map.

3 Using this, we can write p(x) =
∑
pjx

j = 〈w, φ(x)〉 for
wj = pj/

√
cj .

4 Thus if cj decay quickly, then ‖w‖2 won’t be too huge. RKHS
norm and sample complexity is governed by ‖w‖2.

Conclusion: Polynomials and some other simple functions are in
the RKHS.

Jason Lee

Step 1

1 Write K(x, y) = g(ρ) =
∑
ciρ

i.

2 Thus φ(x)i =
√
cix

i is a feature map.

3 Using this, we can write p(x) =
∑
pjx

j = 〈w, φ(x)〉 for
wj = pj/

√
cj .

4 Thus if cj decay quickly, then ‖w‖2 won’t be too huge. RKHS
norm and sample complexity is governed by ‖w‖2.

Conclusion: Polynomials and some other simple functions are in
the RKHS.

Jason Lee

Step 1

1 Write K(x, y) = g(ρ) =
∑
ciρ

i.

2 Thus φ(x)i =
√
cix

i is a feature map.

3 Using this, we can write p(x) =
∑
pjx

j = 〈w, φ(x)〉 for
wj = pj/

√
cj .

4 Thus if cj decay quickly, then ‖w‖2 won’t be too huge. RKHS
norm and sample complexity is governed by ‖w‖2.

Conclusion: Polynomials and some other simple functions are in
the RKHS.

Jason Lee

Step 1

1 Write K(x, y) = g(ρ) =
∑
ciρ

i.

2 Thus φ(x)i =
√
cix

i is a feature map.

3 Using this, we can write p(x) =
∑
pjx

j = 〈w, φ(x)〉 for
wj = pj/

√
cj .

4 Thus if cj decay quickly, then ‖w‖2 won’t be too huge. RKHS
norm and sample complexity is governed by ‖w‖2.

Conclusion: Polynomials and some other simple functions are in
the RKHS.

Jason Lee

Step 2

Restrict to two-layer.

Optimizing only output layer

Consider fθ(x) = a>σ(Wx), and we only optimize over a. This is
a convex problem.

Algorithm: Initialize wj uniform over the sphere, then compute

f̂(x) = arg min
a

∑
i

L(fa,w(xi), yi).

Guarantee (via Rahimi-Recht):

‖f̂ − f‖ . ‖f‖√
m
.

Jason Lee

Step 2

Restrict to two-layer.

Optimizing only output layer

Consider fθ(x) = a>σ(Wx), and we only optimize over a. This is
a convex problem.
Algorithm: Initialize wj uniform over the sphere, then compute

f̂(x) = arg min
a

∑
i

L(fa,w(xi), yi).

Guarantee (via Rahimi-Recht):

‖f̂ − f‖ . ‖f‖√
m
.

Jason Lee

Step 2

Restrict to two-layer.

Optimizing only output layer

Consider fθ(x) = a>σ(Wx), and we only optimize over a. This is
a convex problem.
Algorithm: Initialize wj uniform over the sphere, then compute

f̂(x) = arg min
a

∑
i

L(fa,w(xi), yi).

Guarantee (via Rahimi-Recht):

‖f̂ − f‖ . ‖f‖√
m
.

Jason Lee

Both layers

If we optimize both layers, the optimization is non-convex.

Morally, this non-convexity is harmless. We only need to
show that optimizing wj does not hurt!

Strategy:

Initialize aj ≈ 0 and ‖wj‖ = O(1),

∇ajL(θ) = σ(wjx) and ∇wjL(θ) = ajσ
′(wjx)x

∇wjL(θ) ≈ 0, so the wj do not move under SGD.

The aj converge quickly to their global optimum w.r.t.
wj = w0

j , since wj ≈ w0
j for all time.

Jason Lee

Both layers

If we optimize both layers, the optimization is non-convex.

Morally, this non-convexity is harmless. We only need to
show that optimizing wj does not hurt!

Strategy:

Initialize aj ≈ 0 and ‖wj‖ = O(1),

∇ajL(θ) = σ(wjx) and ∇wjL(θ) = ajσ
′(wjx)x

∇wjL(θ) ≈ 0, so the wj do not move under SGD.

The aj converge quickly to their global optimum w.r.t.
wj = w0

j , since wj ≈ w0
j for all time.

Jason Lee

Both layers

If we optimize both layers, the optimization is non-convex.

Morally, this non-convexity is harmless. We only need to
show that optimizing wj does not hurt!

Strategy:

Initialize aj ≈ 0 and ‖wj‖ = O(1),

∇ajL(θ) = σ(wjx) and ∇wjL(θ) = ajσ
′(wjx)x

∇wjL(θ) ≈ 0, so the wj do not move under SGD.

The aj converge quickly to their global optimum w.r.t.
wj = w0

j , since wj ≈ w0
j for all time.

Jason Lee

Both layers

If we optimize both layers, the optimization is non-convex.

Morally, this non-convexity is harmless. We only need to
show that optimizing wj does not hurt!

Strategy:

Initialize aj ≈ 0 and ‖wj‖ = O(1),

∇ajL(θ) = σ(wjx) and ∇wjL(θ) = ajσ
′(wjx)x

∇wjL(θ) ≈ 0, so the wj do not move under SGD.

The aj converge quickly to their global optimum w.r.t.
wj = w0

j , since wj ≈ w0
j for all time.

Jason Lee

Theorem

Fix a target function f? and let m & ‖f?‖2H. Initialize the network
so that |aj | � ‖wj‖2. Then the learned network

‖f̂ − f?‖ . ‖f‖H√
m
.

Roughly is what Daniely and Andoni et al. are doing.

Jason Lee

Deeper Networks

The idea is similar:

fθ(x) =
∑

ajσ(wL>j xL−1)

Define φ(x; θj) = σ(w(0)L>j xL−1), which induces some Kφ.

SGD on just a is simply training random feature scheme for
this deep kernel Kφ.

Initialization is special in that the a moves much more than w
during training, so kernel is almost stationary.

Jason Lee

1 Overparametrization and Architecture Design

2 Geometric Results on Overparametrization
Review Non-convex Optimization
Non-Algorithmic Results

3 Algorithmic Results
Gradient Dynamics: NTK

4 Limitations
Jason Lee

Other Induced Kernels

Recap

fθ(x) =
∑
j

ajσ(w>j x)

If only aj changes, then get the kernel

K(x, x′) = E[σ(w>j x)σ(w>j x
′)].

Somewhat unsatisfying. The non-convexity is all in wj and it
is being fixed throughout the dynamics.

All weights moving

More general viewpoint. Consider if both a and w move:

fθ(x) ≈ f0(x) +∇θfθ(x)>(θ − θ0) +O(‖θ − θ0‖2).

Jason Lee

Other Induced Kernels

Recap

fθ(x) =
∑
j

ajσ(w>j x)

If only aj changes, then get the kernel

K(x, x′) = E[σ(w>j x)σ(w>j x
′)].

Somewhat unsatisfying. The non-convexity is all in wj and it
is being fixed throughout the dynamics.

All weights moving

More general viewpoint. Consider if both a and w move:

fθ(x) ≈ f0(x) +∇θfθ(x)>(θ − θ0) +O(‖θ − θ0‖2).

Jason Lee

Neural Tangent Kernel

Backup and consider fθ(·) is any nonlinear function.

fθ(x) ≈ f0(x)︸ ︷︷ ︸
≈0

+∇θfθ(x)>(θ − θ0) +O(‖θ − θ0‖2),

Assumptions:

Second order term is “negligible”.

f0 is negligible, which can be argued using
initialization+overparametrization.

References:

Kernel Viewpoint: Jacot et al., (Du et al.)2, (Arora et al.) 2,
Chizat and Bach, Lee et al., E et al.

Pseudo-network: Li and Liang, (Allen-Zhu et al.)&5, Zou et al.

Jason Lee

Neural Tangent Kernel

Backup and consider fθ(·) is any nonlinear function.

fθ(x) ≈ f0(x)︸ ︷︷ ︸
≈0

+∇θfθ(x)>(θ − θ0) +O(‖θ − θ0‖2),

Assumptions:

Second order term is “negligible”.

f0 is negligible, which can be argued using
initialization+overparametrization.

References:

Kernel Viewpoint: Jacot et al., (Du et al.)2, (Arora et al.) 2,
Chizat and Bach, Lee et al., E et al.

Pseudo-network: Li and Liang, (Allen-Zhu et al.)&5, Zou et al.

Jason Lee

Tangent Kernel

Under these assumptions,

fθ(x) ≈ f̂θ(x) = (θ − θ0)>∇θf(θ0)

This is a linear classifier in θ.

Feature representation is φ(x; θ0) = ∇θf(θ0).

Corresponds to using the kernel

K = ∇f(θ0)>∇f(θ0).

Jason Lee

Tangent Kernel

Under these assumptions,

fθ(x) ≈ f̂θ(x) = (θ − θ0)>∇θf(θ0)

This is a linear classifier in θ.

Feature representation is φ(x; θ0) = ∇θf(θ0).

Corresponds to using the kernel

K = ∇f(θ0)>∇f(θ0).

Jason Lee

What is this kernel?

Neural Tangent Kernel (NTK)

K =

L+1∑
l=1

αlKl and Kl = ∇Wl
f(θ0)>∇Wl

f(θ0)

Two-layer

K1 =
∑
j

a2
jσ
′(w>j x)σ′(w>j x

′)x>x′ and K2 =
∑
j

σ(w>j x)σ(w>j x
′)

Jason Lee

Kernel is initialization dependent

K1 =
∑
j

a2
jσ
′(w>j x)σ′(w>j x

′)x>x′ and K2 =
∑
j

σ(w>j x)σ(w>j x
′)

so how a,w is initialized matters a lot.

Imagine ‖wj‖2 = 1/d and |aj |2 = 1/m, then only K = K2

matters (Daniely, Rahimi-Recht).

“NTK parametrization”: fθ(x) = 1√
m

∑
j ajσ(wjx), and

|aj | = O(1), ‖w‖ = O(1), then

K = K1 +K2.

This is what is done in Jacot et al., Du et al, Chizat & Bach

Li and Liang consider when |aj | = O(1) is fixed, and only
train w,

K = K1.

Jason Lee

Initialization and LR

Through different initialization/ parametrization/layerwise learning
rate, you can get

K =

L+1∑
l=1

αlKl and Kl = ∇Wl
f(θ0)>∇Wl

f(θ0)

NTK should be thought of as this family of kernels.

Rahimi-Recht, Daniely studied the special case where only K2

matters and the other terms disappear.

Jason Lee

Infinite-width

For theoretical analysis, it is convenient to look at infinite width to
remove the randomness from initialization.

Infinite-width

Initialize aj ∼ N(0, s2
a/m) and wj ∼ N(0, s2

wI/m).
Then

K1 = s2
aEw[σ′(w>j x)σ′(w>j x

′)x>x′]

K2 = s2
wEw[σ(w>j x)σ(w>j x

′)].

These have ugly closed forms in terms of x>x′, ‖x‖, ‖x′‖.

Jason Lee

Deep net Infinite-Width

Let a(l) = Wlσ(a(l−1)) be the pre-activations with σ(a(0)) := x.
When the widths ml →∞, the pre-activations follow a Gaussian
process. These have covariance function given by:

Σ(0) = x>x′

A(l) =

[
Σ(l−1)(x, x) Σ(l−1)(x, x′)

Σ(l−1)(x′, x) Σ(l−1)(x′, x′)

]
Σ(l)(x, x′) = E(u,v)∼A(l) [σ(u)σ(v)].

limml→∞KL+1 = Σ(L) gives us the kernel of the last layer (Lee et
al., Matthews et al.).
Define the gradient kernels as Σ̇(l)(x, x′) = E(u,v)∼A(l) [σ′(u)σ′(v)].
Using backprop equations and Gaussian Process arguments (Jacot
et al. , Lee et al., Du et al., Yang, Arora et al.) can get

Kl(x, x
′) = Σ(l−1)(x, x′) ·ΠL

l′=lΣ̇
(l′)(x, x′)

Jason Lee

NTK Overview

Recall

fθ(x) = f0(x) +∇fθ(x)(θ − θ0) +O(‖θ − θ0‖2).

Linearized network (Li and Liang, Du et al., Chizat and Bach):

f̂θ(x) = f0(x) +∇fθ(x)>(θ − θ0)

The network and linearized network are close if GD ensures
‖θ − θ0‖2 is small.

If f0 � 1, then GD will not stay close to the initialization1.
Thus need to initialize so f0 doesn’t blow up.

1Probably need f0 = o(
√
m), and is the only place neural net structure is

used.
Jason Lee

Initialization size

Common initialization schemes ensure that norms are roughly

preserved at each layer. Initialization ensures x
(L)
j = O(1).

x(l) = σ(Wx(l−1))

f0(x) =

m∑
j=1

ajx
(L)
j

Important Observation

If a2
j ∼ 1

nin
= 1

m , then f0(x) = O(1).

For two-layer case, first noticed by Li and Liang. For deep
case, used by Jacot et al., Du et al., Allen-Zhu et al., Zou et
al.

Initialization is a
√
m factor smaller than the worst-case.

Jason Lee

Initialization size

Common initialization schemes ensure that norms are roughly

preserved at each layer. Initialization ensures x
(L)
j = O(1).

x(l) = σ(Wx(l−1))

f0(x) =

m∑
j=1

ajx
(L)
j

Important Observation

If a2
j ∼ 1

nin
= 1

m , then f0(x) = O(1).

For two-layer case, first noticed by Li and Liang. For deep
case, used by Jacot et al., Du et al., Allen-Zhu et al., Zou et
al.

Initialization is a
√
m factor smaller than the worst-case.

Jason Lee

Loss with unique root (Square loss , hinge loss)

Heuristic reasoning:

Define J = p× n Jacobian matrix of f . Need to solve
J(θ − θ0) = y − f0, which has a solution if p� n (and some
non-degeneracy).

‖θ̂ − θ0‖2 = (y − f0)>(J>J)−1(y − f0) and does not depend
on m (assuming J>J concentrates).

Jason Lee

Curvature

As m→∞ and f0 = O(1), thus the amount we need to move is
constant

‖θ̂ − θ0‖2 = (y − f0)>(J>J)−1(y − f0).

Let’s look at how “fast” the prediction function deviates from
linear, which is given by the Hessian of fθ. Roughly,

‖∇2fθ(x)‖ = om(1) ≈ 1√
m
.

Two-layer net (NTK parametrization)

∇2
wjf(x) = 1√

m
ajσ
′′(w>j x)xx> and ∇2

aj ,wjf(x) = 1√
m
σ′(w>j x)x

The curvature vanishes as the width increases (due to how we
parametrize/initialize).

Jason Lee

Curvature

As m→∞ and f0 = O(1), thus the amount we need to move is
constant

‖θ̂ − θ0‖2 = (y − f0)>(J>J)−1(y − f0).

Let’s look at how “fast” the prediction function deviates from
linear, which is given by the Hessian of fθ.

Roughly,

‖∇2fθ(x)‖ = om(1) ≈ 1√
m
.

Two-layer net (NTK parametrization)

∇2
wjf(x) = 1√

m
ajσ
′′(w>j x)xx> and ∇2

aj ,wjf(x) = 1√
m
σ′(w>j x)x

The curvature vanishes as the width increases (due to how we
parametrize/initialize).

Jason Lee

Curvature

As m→∞ and f0 = O(1), thus the amount we need to move is
constant

‖θ̂ − θ0‖2 = (y − f0)>(J>J)−1(y − f0).

Let’s look at how “fast” the prediction function deviates from
linear, which is given by the Hessian of fθ. Roughly,

‖∇2fθ(x)‖ = om(1) ≈ 1√
m
.

Two-layer net (NTK parametrization)

∇2
wjf(x) = 1√

m
ajσ
′′(w>j x)xx> and ∇2

aj ,wjf(x) = 1√
m
σ′(w>j x)x

The curvature vanishes as the width increases (due to how we
parametrize/initialize).

Jason Lee

Curvature

As m→∞ and f0 = O(1), thus the amount we need to move is
constant

‖θ̂ − θ0‖2 = (y − f0)>(J>J)−1(y − f0).

Let’s look at how “fast” the prediction function deviates from
linear, which is given by the Hessian of fθ. Roughly,

‖∇2fθ(x)‖ = om(1) ≈ 1√
m
.

Two-layer net (NTK parametrization)

∇2
wjf(x) = 1√

m
ajσ
′′(w>j x)xx> and ∇2

aj ,wjf(x) = 1√
m
σ′(w>j x)x

The curvature vanishes as the width increases (due to how we
parametrize/initialize).

Jason Lee

Curvature

As m→∞ and f0 = O(1), thus the amount we need to move is
constant

‖θ̂ − θ0‖2 = (y − f0)>(J>J)−1(y − f0).

Let’s look at how “fast” the prediction function deviates from
linear, which is given by the Hessian of fθ. Roughly,

‖∇2fθ(x)‖ = om(1) ≈ 1√
m
.

Two-layer net (NTK parametrization)

∇2
wjf(x) = 1√

m
ajσ
′′(w>j x)xx> and ∇2

aj ,wjf(x) = 1√
m
σ′(w>j x)x

The curvature vanishes as the width increases (due to how we
parametrize/initialize).

Jason Lee

Implication on Training Dynamics

Since the curvature can be made small by overparametrization, the
gradient flow dynamics of f̂θt and fθt can be bounded:

‖f̂θt − fθt|‖∞ ≤ O(‖∇2fθ(x)‖) =
1√
m
.

In some of the papers, the linearized function f̂ is referred to a
pseudo-network (Li and Liang, (Allen-Zhu et al.) 5, Zou et al.)

Jason Lee

Training Error

What has been proved:

Two-layer convergence to global minimizer (Li and Liang, Du
et al., Oymak and Soltanolkotabi)

Deep nets, Convolutional Deep nets, Resnets (Du et al.,
Allen-Zhu et al., Zou et al.)

The requirements on width are n2 or worse2. However with ResNet
the width is not depth dependent (Zhang et al.).

2It can be significantly improved with data assumptions to m & ‖f‖2K .
Jason Lee

Learning

What functions can be efficiently learned?

Let K be an induced kernel. The sample complexity of learning a
kernel class is

n & ‖f‖2K/ε2.

Write our target function as a linear function in the RKHS
(Sridharan et al., Zhang et al.):

K(x, x′) = g(ρ) =
∑

ciρ
i = φ(x)>φ(x′) and φ(x)i =

√
cix

i.

f(x) = xk and σ is a monomial of degree k. Then

f(x) = 〈 1
√
ck
ek, φ(x)〉 and ‖f‖2K =

1

ck
.

Jason Lee

Learning

What functions can be efficiently learned?

Let K be an induced kernel. The sample complexity of learning a
kernel class is

n & ‖f‖2K/ε2.

Write our target function as a linear function in the RKHS
(Sridharan et al., Zhang et al.):

K(x, x′) = g(ρ) =
∑

ciρ
i = φ(x)>φ(x′) and φ(x)i =

√
cix

i.

f(x) = xk and σ is a monomial of degree k. Then

f(x) = 〈 1
√
ck
ek, φ(x)〉 and ‖f‖2K =

1

ck
.

Jason Lee

Polynomials

f(x) =
∑

ajx
j =

〈∑
j

aj√
cj
ej , φ(x)

〉
, ‖f‖2K =

∑
j

a2
j/cj .

Multivariate case: Let f(x) =
∑

j aj(w
>
j x)j with ‖wj‖2 = 1, then

‖f‖2K =
∑

j |aj |2/cj 3.
What is learnable?

Constant degree polynomials with sample complexity 1/ck.

Functions whose coefficients aj decay quickly. For two-layer
NTK, cj � 1/j2 , so need

∑
j |aj |2j2 <∞.

3If Kernel has nullspace, then should be ‖f‖2K ≤
∑
j |aj |

2/cj .
Jason Lee

Teacher network:

f(x) =
∑

ajσ(w>j x) =
∑
d

∑
j

αj,d(w
>
j x)d

All such networks are learnable as long as the σ has
coefficients decaying fast enough. Deep networks and
smooth activations can “recurse” argument (similar to
Zhang et al.)

Arora et al. used this to show when the teacher network has
smooth activation that NTK can learn.

Allen-Zhu et al. used a direct construction to find the RKHS
function (pseudo-network) instead of the series expansion of
the kernel/target.

Cao and Gu, Daniely showed that functions in the RKHS are
learnable via deep networks.

Previously known that such teacher networks are learnable
with kernel K(x, y) = 1/(2− x>y) and its recursive variant
(Sridharan et al., Zhang et al.)

Jason Lee

When does the kernel regime hold?

Square loss: For m > m0 , ‖f̂t − ft‖ = 1√
m

for all time t.

Logistic loss: For all time t until L(ft) ≈ 1
m .

Logistic Loss: For very large times t, not a kernel predictor
(Gunasekar et al., Nacson et al.).

SGD with fresh data and either loss: For small time t, SGD on
kernel and SGD of network are same. They will start differing
at some point (Mei et al.)

Jason Lee

Learning Rate

Learning rate schedule is an important (probably the main reason)
that networks trained in practice are not in the Kernel regime.

NTK Parametrization vs Standard Parametrization

Let’s consider

fA(x) =
∑
j

ajσ(w>j x) and fB(x) =
1√
m

∑
j

ajσ(w>j x)

Assume that ‖x‖2 = d.

A: standard initialiation is wj ∼ N(0, I/d) and
aj ∼ N(0, 1/m)

B: NTK initialization is wj ∼ N(0, I/d) and aj ∼ N(0, 1).

Both initializations ensure that f0(x) = O(1) and parametrize
the same functions.

Jason Lee

However to get the same dynamics on ft, we need to scale learning
rate (Lee et al.).

θ
(A)
t+1 = θ

(A)
t − η∇L1(θ(A)) ↔ θ

(B)
t+1 = θ

(B)
t −mη∇L2(θ(B))

Thus for NTK to learn the same function as SGD on standard
parametrization with constant learning rate, we need an
infinite learning rate on NTK parametrization.

Infinite learning rate means we would leave the kernel regime.

So in practice, if you keep the same learning rate when using wider
and wider networks, NTK won’t be a good approximation.

Jason Lee

1 If f?(x) = σ(w>x) (single ReLU), then need exponential in d
many random features to approximate this model (for
K = E[σ(wx)σ(wy)])) , or need predictors with exponential
in d norm (Yehudai and Shamir). If we choose the model to
be fθ(x) =

∑
j σ(w>j x), then it is learnable with O(d)

samples (Soltanolkotabi).
2 With m = dk can only learn as well as fitting a degree k

polynomial (Ghorbani et al.).
3 For a simple distribution realizable by four ReLU with n . d2

samples, no better than random guessing. The idea is the
same as the first bullet. The RKHS inductive bias is very
poorly aligned with targets that are “sparse” in neuron space.
Intuition: f? is 1-sparse in the space of neurons meaning
f?(x) =

∫
ρ(w)σ(w>x)dw and ρ is a dirac delta. The RKHS

inductive bias is ‖ρ‖2 which is really terrible when ρ is a dirac
delta. If you could enforce a ‖ρ‖1 inductive bias, then the
sample complexity is O(d)
If you could learn with respect to ‖ρ‖1 , the sample
complexity is n & d/ε2.

Jason Lee

Going beyond NTK

WARNING: What follows are opinions that are only lightly
grounded in mathematics.

Question

Is the kernel regime reflecting the success of deep learning?

NTK accuracy and SGD accuracy on the same architecture
have a gap (Lee et al., Arora et al.)

Can we close this gap and how?

Jason Lee

Going beyond NTK

WARNING: What follows are opinions that are only lightly
grounded in mathematics.

Question

Is the kernel regime reflecting the success of deep learning?

NTK accuracy and SGD accuracy on the same architecture
have a gap (Lee et al., Arora et al.)

Can we close this gap and how?

Jason Lee

Going beyond NTK

WARNING: What follows are opinions that are only lightly
grounded in mathematics.

Question

Is the kernel regime reflecting the success of deep learning?

NTK accuracy and SGD accuracy on the same architecture
have a gap (Lee et al., Arora et al.)

Can we close this gap and how?

Jason Lee

Random thoughts:

Learning rate is key. If you use a small LR, then NTK and
SGD find similar predictors (but the test accuracy is not super
high). With the same architecture and the LR is tuned, then
the test accuracy is higher. NTK implicitly enforces the
learning rate to be infinitesmally small, which may hurt
learning.

Logistic Loss: If you try to solve matrix completion with
fΘ((i, j)) = (UV >)ij , then NTK simply imputes the observed
entries. However if you run GD for a long time, then you get
minimum nuclear norm (Srebro, Gunasekar et al.)

Jason Lee

Logistic Loss (and maybe one-pass SGD): We know that
asymptotically (with numerous assumptions) converges to a
stationary point of arg minyifθ(xi)≥1 ‖θ‖2 (Nacson et al., Li and
Lv)4 For even simple models, `2 regularization on parameters leads
to interesting inductive bias.

For deep linear nets, schatten 2/L norm, so promotes low
rank.

For linear model β = θ1 � θ2 , gets ‖β‖1.

For two-layer ReLU net, f(x) =
∫
ρ(w)σ(wx)dw , gets ‖ρ‖1

(Neyshabur et al. , Bengio et al., Wei et al.).

Deep ReLU net, size-free complexity bound (Golowich et al.)

However we should NOT expect to get global max-margin except
in special example such as matrix sensing.
Question: If I initialize at the NTK solution, which stationary point
of arg minyifθ(xi)≥1 ‖θ‖2 do you converge to? This is what
happens in super-wide networks with infinitely small LR.

4NTK is not stationary point of this.
Jason Lee

Questions?

Thank You.
Questions?

Jason Lee

	Overparametrization and Architecture Design
	Geometric Results on Overparametrization
	Review Non-convex Optimization
	Non-Algorithmic Results

	Algorithmic Results
	Gradient Dynamics: NTK

	Limitations

